viernes, 17 de abril de 2015

CURSO DE BIOLOGÍA


MICROORGANISMOS.

1.- INTRODUCCIÓN. 
            El poder de resolución del ojo humano, es decir, su capacidad para distinguir entre dos objetos puntuales que se encuentran muy próximos, es de alrededor de 0,2 mm en el mejor de los casos. Debido a ello, una parte muy sustancial de la gran diversidad de seres vivos que constituyen nuestra biosfera escapó a la observación humana hasta épocas muy recientes: se trata del grupo de seres vivos que hoy denominamos microorganismos.
            Los microorganismos constituyen un grupo de seres vivos sumamente heterogéneo cuya única característica común es su reducido tamaño: todos son lo suficientemente pequeños como para pasar inadvertidos al ojo humano, siendo preciso el uso de dispositivos de aumento como el microscopio óptico o, en algunos casos, el microscopio electrónico para poder observarlos. La gran mayoría de los microorganismos son unicelulares, aunque una parte significativa de ellos tienen organización subcelular y unos pocos forman agrupaciones de células de tipo colonial sin llegar a constituir verdaderos organismos pluricelulares.
            El área de la ciencia biológica que se ocupa del estudio de los microorganismos es la microbiología. Esta parcela del conocimiento biológico tuvo un desarrollo relativamente tardío en comparación con otras y su nacimiento puede datarse a mediados del siglo XVII, cuando Anton van Leewenhoek  (Figura 20.1) realizó las primeras observaciones de lo que hoy conocemos como microorganismos a través del microscopio simple que él mismo había construido. Al igual que la citología, la microbiología languideció durante los siguientes doscientos años con una dedicación casi exclusiva a la descripción y catalogación de los distintos tipos de microorganismos que se iban descubriendo. Fue a mediados del siglo XIX cuando un renovado interés por algunas viejas polémicas, como la teoría de la generación espontánea, junto con el reconocimiento del papel de los microorganismos en la enfermedad y en determinados proceso industriales, como las fermentaciones, supuso la consolidación definitiva de esta ciencia.
            La teoría de la generación espontánea, según la cual seres vivos podían formarse espontáneamente a partir de materia inanimada, había sido descartada en su versión más amplia a finales del siglo XVII cuando Francesco Redi demostró experimentalmente que los “gusanos” que aparecían en la carne putrefacta eran en realidad larvas de insectos y que si la carne se protegía de manera que éstos no pudieran depositar sus huevos en ella las larvas no aparecían.  Sin embargo, el descubrimiento de los microorganismos resultó, paradójicamente, en un nuevo impulso para esta teoría, ya que muchos de ellos parecían surgir sin más en los líquidos en los que se ponían a macerar durante un tiempo distintos tejidos animales o vegetales. Más tarde, a finales del siglo XVIII, Lázaro Spalazanni demostró que estos microorganismos, entonces denominados “infusorios”, no aparecían cuando los frascos que contenían los tejidos en maceración se cerraban herméticamente y se sometían a ebullición. Esta demostración no fue suficiente para los partidarios de la generación espontánea, que argumentaban, en línea con los puntos de vista vitalistas predominantes por aquel entonces, que la ebullición había destruido la “fuerza vegetativa” presente en las infusiones. A comienzos del siglo XIX muchos creían que al hervir los frascos Spalazanni había destruido las propiedades “vivificantes” del aire que contenían, de las que sería responsable el recién descubierto oxígeno.
          A mediados del siglo XIX, Louis Pasteur (Figura 20.2) realizó una serie de experimentos que resultaron en la refutación definitiva de la teoría de la generación espontánea. Pasteur preparó infusiones del tipo de las que solían dar lugar a la aparición de microorganismos en unos matraces de vidrio a los que luego calentó el cuello a la llama con el objeto de estirarlo y moldearlo a modo de “cuello de cisne” (Figura 20.3). A continuación hirvió el contenido para eliminar cualquier microorganismo presente en la infusión. Estos matraces permanecieron abiertos, de manera que el aire en su interior podía renovarse por simple difusión, y fueron observados durante varios meses sin que en ninguno de ellos se detectase la presencia de microorganismos. Pasteur concluyó que los microorganismos que aparecían habitualmente en las infusiones llegaban en pequeño número a ellas a través de las partículas de polvo atmosférico en las que se encontraban y luego se reproducían en ellas al encontrar un medio rico en nutrientes. El cuello largo, estrecho y sinuoso de sus matraces había retenido todas las partículas de polvo ambiental impidiendo así la llegada de microorganismos al líquido, que permanecía estéril indefinidamente. Pasteur comprobó asimismo que si, inclinando los matraces, se permitía el acceso del líquido a la zona sinuosa en donde el polvo había quedado retenido, sí se producía crecimiento de microorganismos en él.
            Con este diseño experimental, sencillo y elegante, Pasteur desbarataba las críticas basadas en una presunta alteración de las propiedades del aire por efecto del calor. Es digno de mención el hecho de que algunos de los matraces de Pasteur, que se conservan en el Instituto que lleva su nombre en París, permanecen libres de crecimiento microbiano en la actualidad, después de casi 150 años. La presentación por Pasteur del informe titulado “Experiencias relativas a las generaciones llamadas espontáneas” ante la Academia de las Ciencias de París en el año 1860 puede considerarse el acta fundacional de la moderna microbiología.
            Es frecuente olvidar, cuando se habla de la refutación de la teoría de la generación espontánea, que tal refutación se refiere a la ocurrencia de este fenómeno en las condiciones actuales del planeta Tierra. Por ello conviene poner de manifiesto que las teorías actualmente aceptadas acerca del propio origen de la vida describen una suerte de “generación espontánea” ocurrida en el océano primitivo de nuestro planeta, en unas condiciones ambientales muy diferentes de las actuales.
            Otro hito en la historia de la microbiología lo supuso el reconocimiento del papel de los microorganismos, en concreto de  las levaduras, en los procesos de fermentación de los que se obtienen las bebidas alcohólicas y distintos tipos de alimentos. Fue también Louis Pasteur, que trabajó varios años al servicio de industriales fermentadores de la ciudad de Lille, quien identificó los distintos tipos de levaduras implicados en los distintos tipos de fermentación.
            De todos modos, el principal impulso de la microbiología resultó del reconocimiento del papel de los microorganismos en las enfermedades de carácter infeccioso. Aunque la existencia de organismos parásitos del tipo de los piojos o las lombrices intestinales, tanto en humanos como en el ganado, era conocida desde la antigüedad, el hecho de que distintos tipos de microorganismos podían también ejercer el parasitismo y causar enfermedades en los organismos hospedadores no fue reconocido hasta la segunda mitad del siglo XIX. Una vez más, Pasteur fue pionero en esta área de la investigación, cuando identificó al protozoo Nosema bombycis como el causante de una enfermedad que diezmaba a los gusanos productores de seda que cultivaban los industriales textiles de la Provenza. Sin embargo, la relación de los microorganismos con numerosas enfermedades humanas fue establecida inicialmente por Robert Koch (Figura 20.4), que identificó y aisló en 1876 a la especie bacteriana Bacillus anthraciscomo causante del ántrax. El descubrimiento de Koch fue seguido por la identificación y aislamiento de numerosos gérmenes causantes de un buen número de enfermedades, entre ellos los del cólera, difteria, tétanos, peste, sífilis y otros muchos.
            El enorme interés que despertó la relación entre microorganismos y enfermedad y las expectativas creadas de que se pudieran tratar enfermedades hasta entonces consideradas incurables propiciaron un gran auge de la microbiología, como ciencia auxiliar de la medicina, en los primeros años del siglo XX. Se desarrollaron técnicas para el cultivo de los microorganismos y también para su aislamiento y manipulación así como para su observación microscópica, incluyendo el uso de una gran variedad de colorantes y mejoras en el diseño de los microscopios. La búsqueda de sustancias capaces de matar a determinados microorganismos sin afectar a las células del hospedador condujo al uso generalizado de los antibióticos a mediados del siglo XX, lo que supuso un gran avance en el tratamiento de la mayoría de las enfermedades infecciosas.
            Aunque una gran parte del desarrollo de la microbiología se debió, como se ha dicho, a sus aplicaciones prácticas en la medicina y en la industria de los alimentos, muchos investigadores enfocaron su atención sobre microorganismos de las más variadas procedencias, poniendo de manifiesto su amplia difusión en los ecosistemas terrestres, su importancia en los ciclos biogeoquímicos y su gran diversidad bioquímica y metabólica. Por otra parte, dada la facilidad con que se pueden cultivar y manipular y su relativa simplicidad morfológica y funcional, el estudio de los microorganismos, en particular de las bacterias y los virus, ha sido y sigue siendo de gran utilidad en el desarrollo de los conocimientos genéticos y bioquímicos.

2.- CLASIFICACIÓN.
             Por ser los microorganismos un grupo tan sumamente heterogéneo su clasificación debe ser encuadrada en relación con la de los demás seres vivos. Los sistemas de clasificación de los seres vivos han venido evolucionando a lo largo de los últimos dos siglos y los cambios más significativos que se han ido produciendo afectan precisamente al amplio grupo que nos ocupa.
            En su Systema Naturae Carl von Linné (Figura 20.5) dividía en 1758 el mundo viviente en dos grandes Reinos: el reino animal y el reino vegetal. Los distintos tipos de microorganismos se fueron asignando a uno u otro reino a medida que iban siendo descubiertos atendiendo a criterios que no siempre suscitaban un acuerdo generalizado. Así, algunos organismos unicelulares móviles que presentaban afinidades con las células de los animales pluricelulares se les denominóprotozoos y fueron asignados al reino animal, otros organismos unicelulares fotosintéticos fueron denominados algas unicelulares o protofitas y se asignaron al reino vegetal; las bacterias, algunas de las cuales  también realizan la fotosíntesis, aparecían en los tratados de botánica como un grupo más dentro del reino vegetal. A pesar de las dificultades que presentaba, el sistema de Linné se mantuvo vigente durante casi doscientos años, haciendo salvedad del intento de Ernst Haeckel en 1866 de establecer un tercer reino, llamado protistas, en el que agrupaba a un variado grupo de organismos de adscripción dudosa. Los libros de texto para la enseñanza de la biología de mediados del siglo XX seguían difundiendo la clasificación de los seres vivos en dos reinos.
            La constatación de que las diferencias entre las células procariotas y las células eucariotas son mayores que las existentes entre las animales y las vegetales condujo a la propuesta de Edouard Chatón en 1938 de dividir a los seres vivos en dos imperios, el procariota y el eucariota, manteniendo dentro de éste la división en reino animal y reino vegetal. En 1956 H. F. Copeland reestructuraba la propuesta de Chatón estableciendo cuatro reinos: el reino moneras, que agrupaba a todos los organismos procariontes, los tradicionales reinos animal y vegetal, y un cuarto reino, el protoctista, en que incluía a todos los eucariontes unicelulares y algunos de sus descendientes pluricelulares entre los que se encontrarían los hongos y las algas.
            La clasificación de los seres vivos que obtuvo más aceptación y resultó más duradera después de la de Linné fue el sistema de los cinco reinos propuesto por R. Whittaker en 1959 y ampliamente divulgado por Lynn Margulis en su obra Five Kingdoms. Este sistema divide a los seres vivos en los siguientes cinco reinos: a) Moneras: incluye a todos los organismos procariontes; b) Protistas: incluye a todos los eucariontes unicelulares (antiguos protozoos, algas y hongos unicelulares); c) Fungi: incluye a todos los hongos pluricelulares (que se desgajan así del reino vegetal); d) Plantae: incluye todos los hasta entonces llamados vegetales pluricelulares con excepción de los hongos; e) Animales: incluye a todos los hasta entonces llamados animales pluricelulares o metazoos. La clasificación de Whittaker sigue siendo en la actualidad la más difundida en los libros de texto para la enseñanza de la biología en la educación secundaria.
            La introducción de las técnicas de secuenciación de las proteínas y más tarde de los ácidos nucleicos, provocó un vuelco en los sistemas de clasificación de los seres vivos. La aplicación de estas técnicas a la clasificación de los seres vivos descansa sobre el supuesto de que secuencias similares de aminoácidos o nucleótidos denotan un mayor parentesco evolutivo entre las especies que las presentan, mientras que secuencias muy diferentes irían asociadas con una mayor divergencia a partir de un antepasado común más remoto. A mediados de la década de 1970 Carl R. Woese decidió aplicar estas técnicas tomando como referencia la secuencia de un gen que está presente en todas las formas de vida celular conocidas: el gen que codifica la molécula de rRNA 16S de la subunidad pequeña del ribosoma. Los primeros estudios confirmaron en líneas generales la corrección de las clasificaciones precedentes, realizadas sobre la base de estudios de tipo morfológico. Sin embargo, en el curso de estos estudios se produjo el descubrimiento de un nuevo grupo de microorganismos, las arqueobacterias, que hasta entonces había pasado desapercibido debido a su gran similitud morfológica con las bacterias, pero que presentaban claras divergencias a nivel bioquímico con respecto a éstas. Woese propuso en 1977 una nueva clasificación en la que el primitivo reino monera era sustituido por dos nuevos reinos: eubacteria, que incluía a las bacterias conocidas hasta entonces, y archaeobacteria, que incluía al grupo recién descubierto. Se ampliaba así el número de reinos a seis. Posteriormente el análisis más detallado de los datos moleculares reveló que existía un mayor parentesco evolutivo entre los organismos eucariotas y las arqueobacterias que entre éstas y las eubacterias, lo que condujo a Woese en 1990 a modificar su propuesta inicial sustituyendo la clasificación de los seis reinos por otra más simplificada que dividía a los seres vivos en tres grandes dominios: Bacteria, Archaea y Eukarya. El sistema de los tres dominios, con sus respectivas subdivisiones que equivaldrían a los tradicionales reinos, goza entre los estudiosos de la evolución de una aceptación bastante amplia aunque no total. Algunos investigadores, liderados por el veterano zoólogo y reputado evolucionista Ernst Mayr, han argumentado que es preferible mantener la unidad del imperio procariota reflejando así las claras diferencias morfológicas que existen entre los dos grandes tipos celulares, antes que incidir en las relaciones de parentesco evolutivo como hace el sistema de los tres dominios. Tales opiniones críticas se han plasmado en un sistema, propuesto en 2004 por T. Cavalier-Smith, que se compone de dos imperios, procariota y eucariota, que abarcan un total de seis reinos, los cuales no coinciden exactamente con los de otras clasificaciones.
            En los últimos años, diferentes estudios acerca de la ultraestructura celular atestiguan que existe una diversidad mucho mayor de lo que se creía dentro del dominio eukarya. Ello ha conducido a que muchos investigadores hayan propuesto la fragmentación del primitivo reino protistas en múltiples grupos que según muchos de ellos merecen la categoría taxonómica de reino (Figura 20.6).
            En la actualidad se tiende a representar la diversidad de los seres vivos en forma de árboles filogenéticos construidos atendiendo a los criterios de la sistemática filogenética o cladismo, ya utilizados por Woese en sus propuestas de clasificación. La sistemática filogenética se basa en un análisis cuantitativo de datos morfológicos y moleculares que permite establecer hipótesis acerca del parentesco evolutivo de las distintas especies, poniendo así mayor énfasis en la ascendencia común que en las similitudes morfológicas o adaptativas de los distintos grupos a considerar. Esta nueva filosofía sistemática ha desdibujado algunas de las fronteras arbitrariamente establecidas entre los antiguos reinos.  Así ocurre con la frontera entre organismos unicelulares y pluricelulares; algunos grupos de algas y hongos unicelulares, antiguamente clasificados como protistas, se encuadran hoy en las mismas ramas del árbol filogenético que sus compañeros pluricelulares (caso de las levaduras), mientras que grupos enteros de algas, como las algas rojas y las algas pardas, se han desgajado del reino plantas para constituir ramas independientes, junto con algunos compañeros unicelulares, dentro del dominio eukarya.
            En resumen, parece llegado el momento de desechar definitivamente las antiguas clasificaciones basadas en criterios antropocentristas (o al menos “animalia-centristas”) para adoptar un sistema de clasificación mucho más racional basado en el principio de ascendencia común. Está en marcha un ambicioso proyecto denominado The tree of life web (ToL), basado en la filosofía de la sistemática filogenética, en el que biólogos de todo el mundo están colaborando en la construcción de un sistema completo de clasificación filogenético en el que se plasme la unidad y la diversidad de la vida sobre la Tierra.

No hay comentarios:

Publicar un comentario