miércoles, 15 de abril de 2015

ingeniería aeroespacial - mecánica de fluidos



Un circuito de refrigeración corresponde a un arreglo mecánico basado en los principios de la termodinámica y mecánica de fluidos diseñado para transferir energía térmica entre dos focos, desplazando la energía térmica contenida en uno de sus focos a fin de obtener una menor temperatura en este. Estos focos suelen ser sistemas termodinámicamente cerrados.
Este cometido se lleva a cabo forzando la circulación de un fluido refrigerante por el interior de un circuito cerrado -o semicerrado- de tuberías e intercambiadores de calor. La circulación de este fluido refrigerante se realizará a través de máquinas de fluido comocompresores y/o bombas, conforme la naturaleza y estado del refrigerante.
La constitución y configuración de un circuito de refrigeración no guarda un estándar establecido ya que varía conforme la aplicación y fluido utilizado. Estos varían desde el clásico enfriamiento por agua en motores de combustión interna por medio de radiadores, pasando por sistemas de refrigeración industrial para la industria de alimentos, hasta el control de temperatura decondensadores en centrales nucleares por medio de torres de refrigeración, entre muchas otras aplicaciones.
El término de circuito de refrigeración se suele reemplazar por el de sistema frigorífico o sistema de refrigeración en aplicaciones de refrigeración industrial, debido a la complejidad de estos sistemas y –principalmente- a que están constituidos por dos o más intercambiadores de calor en los cuales el refrigerante sufre un cambio de estado en el cual el intercambio de calor latente es el que genera el fenómeno de refrigeración, así como al complejo sistema de control automático asociado.
En muchos casos, para que este desplazamiento de energía se lleve a cabo de buena manera, es importante que uno de los focos esté relativamente aislado del exterior para someterlo a estudio como un sistema termodinámico cerrado.

Los terminos físicos del proceso de refrigeración han sido tratados con anterioridad, sin embargo por razones prácticas el agua no se usa como refrigerante.
Un circuito simple de refrigeración se construye como muestran los dibujos que siguen. En cada uno de ellos se describen los componentes individuales para aclarar el conjunto final:
Evaporador
Un refrigerante en forma líquida absorverá calor cuando se evapore, y este cambio de estado produce un enfriamiento en un proceso de refrigeración. Si a un refrigerante a la misma temperatura que la del ambiente se le permite expansionarse a través de una boquilla con una salida a la atmosfera, el calor lo tomará del aire que lo rodea y la evaporación se_llevará a cabo a una temperatura que corresponderá a la presión atmosférica.
Si por cualquier circunstancia, se cambia la presión de la salida (presión atmosférica) se obtendrá una temperatura diferente de evaporación.
El elemento donde esto se lleva a cabo es el evaporador cuyo trabajo es sacar calor de sus alrededores y asi producir una refrigeración.
Compresor 
El proceso de refrigeración implica un circuito cerrado. A1 refrigerante no se le deja expansionar al afire libre.
Cuando el refrigerante va hacia el evaporador este es alimentado por un tanque. La presión en el tanque será alta, hasta que su presión se iguale a la del evaporador. Por esto la circulación del refrigerante cesará y la temperatura tanto en el tanque como en el evaporador se elevará gradualmente hasta alcanzar la temperatura ambiente.
Para mantener una presión menor y con esto una temperatura más baja, es necesario sacar el vapor del evaporador. Esto lo realiza el compresor el cual aspira vapor del evaporador. En términos sencillos, el compresor se puede comparar a una bomba que transporta vapor en el circuito del refrigerante.
En un circuito cerrado a la larga prevalece una condición de equilibrio. Para ampliar más este concepto tenemos que ver si el compresor aspira vapor más rapidamente, que el que se puede formar en el evaporador, la presión descenderá y con esto la temperatura en el evaporador. Por el contrario, si la carga en el evaporador se eleva el refrigerante se evaporará más rapidamente lo que producirá una mayor presión y por esto una mayor temperatura en el evaporador.
El compresor, forma de trabajo
El refrigerante sale del evaporador, o bien como vapor saturado o ligeramente recalentado y entra en el compresor donde es comprimido. La compresión se realiza igual que en un motor de explosión, esto es por el movimiento de un pistón.
El compresor necesita una energia y produce un trabajo. Este  trabajo es transferido al vapor refrigerante y se le llama trabajo de compresión.
A causa de este trabajo de compresión, el vapor sale del compresor a una presión distinta y la energía extra aplicada produce un fuerte recalentamiento del vapor.
El trabajo de compresión depende de la presión y temperatura de la planta. Más trabajo, por supuesto requiere comprimir 1 Kg. de gas a 10 At (~bar) que comprimir la misma cantidad a 5 At. (~bar).
Condensador 
El refrigerante deja su calor en el condensador y el calor es tranferido a un medio que se encuentra a más baja temperature. La cantidad de calor que suelta el refrigerante es el absorvido en el evaporador mas el calor recibido por el trabajo de compresión.
El calor se transfiere a un medio que puede ser aire ó agua, el único requisito es que su temperature sea más baja que la correspondiente a la presión de condensación del refrigerante. El proceso en el condensador de otra manera se puede comparar con el proceso en el evaporador, excepto que tiene el "signo" opuesto, es por consiguiente el cambio de estado de vapor a líquido.
Proceso de expansión
El líquido procedente del condensador penetra en un tanque colector, el recipiente. Este tanque se puede comparar al mencionado en el punto 3.1. al hablar del evaporador.
La presión en el recipiente es más alta que la presión en el evaporador a causa de la compresión (incremento de presión) que se lleva a cabo en el compresor. Para disminuir la presión, al mismo nivel del evaporador hay que colocar un dispositívo que lleve a cabo este proceso el cual se llama de estrangulación o expansion, por lo que este dispositivo es conocido por dispositívo de estrangulación o dispositívo de expansión. Normalmente se utiliza una válvula llamada por tanto válvula de estrangulación o válvula de expansión.
Delante de la válvula de expansión el fluído estará a una temperatura por encima del punto de ebullición. Al reducirle rapidamente su presión se producirá un cambio de estado, el líquido empezará a hervir y a evaporarse. La cooperación se lleva a cabo en el evaporador y así se completa el circuito.
Lados de alta y baja presión en una planta de refrigeración
Hay muchas temperaturas diferentes implicadas en el funcionamiento de una planta de refrigeración. De aqui que hay diferentes cosas como líquido subenfriado, líquido saturado, vapor saturado y vapor recalentado. En principio, sin embargo solo hay dos presiones: presión de cooperación y presión de condensación. Las plantas entonces se pueden dividir en Lado de alta presión y Lado de baja presión tal como se muestra en la figura siguiente. 









Los circuitos neumáticos son instalaciones que se emplean para generar, transmitir y transformar fuerzas y movimientos por medio del aire comprimido.
Un circuito neumático está formado por los siguientes elementos:
  • El generador de aire comprimido, que es el dispositivo que comprime el aire de la atmósfera hasta que alcanza la presión necesaria para que funcione la instalación.
  • Las tuberías y los conductos, a través de los que circula el aire comprimido
  • Los actuadores, como los cilindros y los motores, que son los encargados de convertir los tubos en émbolos y moverlos para accionar el circuito.
  • Los elementos de control, como las válvulas distribuidoras. Las válvulas abren o cierran el paso del aire.
  • Los tornillos eléctricos que sirven para las puertas de los medios de transportes.
  La neumática es la tecnología que emplea el aire comprimido como modo de transmisión de la energía necesaria para mover y hacer funcionar mecanismos.

   Mediante un fluido, ya sea aire (neumática), aceite o agua (hidráulica) se puede conseguir mover un motor en movimiento giratorio o accionar un cilindro para que tenga un movimiento de salida o retroceso de un vástago (barra).

   Esto hoy en día tiene infinidad de aplicaciones como pueden ser la apertura o cierre de puertas en trenes o autobuses, levantamiento de grandes pesos, accionamientos para mover determinados elementos, etc.



   El control del motor o del cilindro para que realice lo que nosotros queremos se hace mediante válvulas que hacen las veces de interruptores, pulsadores, conmutadores, etc si lo comparamos con la electricidad y mediante tubos conductores (equivalente a los conductores eléctricos) por los que circula el fluido. En esta unidad vamos a estudiar como se realizan los montajes de los circuitos neumáticos o hidráulicos.

   Todo lo que vamos a estudiar en este curso de neumatica hace referencia a circuitos neumáticos, pero cambiando aire por agua o aceite valdría igualmente para los hidráulicos.

   Neumatica e hidraúlica prácticamente solo se diferencia en el fluido, en uno es aire y en el otro agua. Antes de empezar puedes ver aqui todos los símbolos de Neumática o ir aprendiendolos según avances.

   Componentes de un Circuito Neumatico

   Pues bien nada mejor que una imagen para ver los componentes generales de un circuito neumático. Luego explicaremos uno a uno.

circuito neumatico

  Compresores Neumaticos (Generadores)

   Para producir el aire comprimido se utilizan compresores que elevan la presión del aire al valor de trabajo deseado. La presión de servicio es la suministrada por el compresor o acumulador y existe en las tuberías que recorren el circuito. El compresor normalmente lleva el aire a un depósito para después coger el aire para el circuito del depósito. Este depósito tiene un manómetro para regular la presión del aire y un termómetro para controlar la temperatura del mismo. El filtro tiene la misión de extraer del aire comprimido circulante todas las impurezas y el agua (humedad) que tiene el aire que se puede condensar. Todos estos componentes se llaman circuito de control.

neumatica


   Este sería el inicio de la instalación. Nosotros los ejercicios que hagamos supondremos que llevan todo esto aunque no lo representaremos por facilidad a la hora de realizar los circuitos.

   Cilindros Neumaticos

    Al llegar la presión del aire a ellos hace que se mueva un vástago (barra), la cual acciona algún elemento. Hay de varios tipos:

   De simple efecto: Estos cilindros tienen una sola conexión de aire comprimido. No pueden realizar trabajos más que en un sentido. Se necesita aire sólo para un movimiento de traslación. El vástago retorna por el efecto de un muelle incorporado o de una fuerza externa. Ejemplo de Aplicación: frenos de camiones y trenes. Ventaja: frenado instantáneo en cuanto falla la energía. Apertura de una puerta mientras le llaga el aire, cuando deja de llegar la puerta se cierra por la acción del retorno del cilindro gracias al muelle.

cilindros neumaticos

   Cilindros de doble efecto: la fuerza ejercida por el aire comprimido anima al émbolo, en cilindros de doble efecto, a realizar un movimiento de traslación en los dos sentidos. Se dispone de una fuerza útil tanto en la ida como en el retorno.

CILINDRO DOBLE EFECTO

neumatica cilindro de doble efecto


   Elementos Neumáticos con Movimiento Giratorio

   Estos elementos transforman la energía neumática en un movimiento de giro mecánico. Son motores de aire comprimido.

simbologia neumatica

   Válvulas Neumaticas

   Las válvulas son elementos que mandan o regulan la puesta en marcha, el paro y la dirección, así como la presión o el caudal del fluido enviado por una bomba hidráulica o almacenado en un depósito.

   Las posiciones de las válvulas distribuidoras se representan por medio de cuadrados. La cantidad de cuadrados yuxtapuestos indica la cantidad de posiciones de la válvula distribuidora.

VALVULAS NEUMATICAS

   El funcionamiento se representa esquemáticamente en el interior de las casillas (cuadros).Las líneas representan tuberías o conductos. Las flechas, el sentido de circulación del fluido (figura 1). Las posiciones de cierre dentro de las casillas se representan mediante líneas transversales (figura 2). La unión de conductos o tuberías se representa mediante un punto (figura 2). Las conexiones (entradas y salidas) se representan por medio de trazos unidos a la casilla que esquematiza la posición de reposo o inicial (figura 3).

VALVULAS NEUMATICAS SIMBOLO
   La otra posición se obtiene desplazando lateralmente los cuadrados, hasta que las conexiones coincidan. Las posiciones pueden distinguirse por medio de letras minúsculas a, b, c ... y 0. Las salidas (al exterior) y entradas de aire se representan mediante un triangulo.

FUNCIONAMIENTO VALVULAS NEUMATICAS
   Para activar la válvula (que cambie de posición se puede hacer manualmente (como un pulsador) o de otras formas (eléctricamente, neumáticamente (una flecha) ,etc).

valvulas neumaticas
   La válvula selectora  cuando el aire entra por X sale por A pero no puede salir por Y. Si entra por Y sale por A pero no puede salir por X.

   Veamos un ejemplo de funcionamiento de una válvula 3/2

VALVULA DISTRIBUIDORA
VALVULA 3/2
   Un regulador de flujo: es un elemento que permite controlar el paso del aire en un sentido, mientras que en el otro sentido circula libremente.


REGULADOR DE FLUJO

   Las válvulas estranguladoras con retención, conocidas como válvulas reguladoras de velocidad, son híbridas. Desde el punto de vista de la estrangulación son válvulas de flujo y como tales se las emplea en neumática. La función de retención les hace ser al mismo tiempo una válvula de bloqueo.

   El regulador de flujo se alimenta con aire del suministro. Dicho regulador emite un flujo de aire controlado en una conexión en T. Una tubería de esta conexión se conecta a la válvula accionada por diafragma y la otra se deja abierta para que salga aire a la atmósfera.

   Cuando la tubería de toma de aire es bloqueada por la rueda de un vehículo, la presión aumenta en la tubería y la válvula accionada por diafragma se activa, y el aire comprimido entra en el pistón.

energia neumatica

No hay comentarios:

Publicar un comentario