viernes, 17 de abril de 2015

CURSO DE BIOLOGÍA


 LA ESTRUCTURA DEL DNA: LA DOBLE HÉLICE.

            Una de las técnicas de análisis que resultó de mayor utilidad para la comprensión de la estructura tridimensional de las biomoléculas fue la cristalografía de difracción de rayos X. Como ya se ha comentado en un capítulo anterior, esta técnica fue aplicada con éxito al estudio de la conformación tridimensional de las proteínas.
            El primer investigador en dirigir su atención a la estructura tridimensional del DNA fue William Astbury (pionero también en la aplicación de la cristalografía de RX al análisis de la estructura de las proteínas). Ya en 1945, tras deducir de la elevada densidad de las muestras de DNA que los nucleótidos debían encontrarse en la cadena polinucleotídica fuertemente empaquetados o “apilados” unos sobre otros, obtuvo algunos difractogramas de RX de la molécula de DNA que, a pesar de su baja calidad, demostraban que efectivamente los nucleótidos se encontraban apilados con una separación de 0,34 nm entre cada dos restos sucesivos.
            A comienzos de los años 50 tres centros de investigación rivalizaban en el análisis de la estructura tridimensional de las biomoléculas mediante cristalografía de RX. Uno de ellos era el Instituto de Tecnología de California (Cal Tech), cuya división de química, dirigida por Linus Pauling (Figura 19.10), se había apuntado varios éxitos notables en el descubrimiento de la estructura secundaria de las proteínas. Otro era el Laboratorio Cavendish de la Universidad de Cambridge (Inglaterra), dirigido por Sir Willian Lawrence Bragg (Figura 19.9), en el que grandes cristalógrafos como John Kendrew y Max Perutz centraban su atención en el estudio de las estructuras terciaria y cuaternaria de las proteínas globulares. Fue en el Laboratorio Cavendish  donde coincidieron a comienzos de 1951 dos jóvenes investigadores, James D. Watson y Francis H.C. Crick, que estaban llamados a ser quienes desvelaran finalmente el misterio del gen. Un tercer grupo se había formado en el King’s College de Londres bajo la jefatura de John Randall, que contaba con la colaboración de Maurice Wilkins y de la experta cristalógrafa Rosalind Franklin (Figura 19.11).
            Entre 1951 y 1953 se desató entre estos grupos una especie de carrera por identificar la estructura tridimensional del DNA, carrera que se desbocó por completo cuando la publicación del experimento de Hershey y Chase a finales de 1952 puso a todos los grupos sobre la pista correcta de cual era en realidad la molécula de la herencia. Linus Pauling, en principio favorito para ganar esta carrera dado su enorme prestigio, no tuvo éxito en esta ocasión; publicó, a comienzos de 1953, una propuesta de estructura para el DNA que contenía errores de bulto que obligaron a descartarla inmediatamente después de su publicación. En el King’s College, Rosalind Franklin había desarrollado una técnica que le permitía obtener fibras de DNA altamente orientadas y obtener así difractogramas de RX de una calidad y lujo de detalles muy superiores a los conocidos hasta entonces. Wilkins y Franklin se encontraban a comienzos de 1953 intentando encajar sus datos de RX dentro de un modelo plausible para el DNA. Mientras tanto Watson y Crick trataban de construir su propio modelo tridimensional basándose en difractogramas de una calidad muy inferior. No obstante, su trabajo se encontraba muy avanzado; habían analizado cuidadosamente la estructura de los nucleótidos individuales y se habían percatado de que los datos obtenidos por Chargaff tres años antes, sobre las proporciones de las bases nitrogenadas, debían tener algún significado relevante, lo que probablemente fue una de las claves de su éxito posterior. Fue entonces cuando Jim Watson, durante una conversación con Maurice Wilkins, pudo ver algunos de los difractogramas obtenidos por Rosalind Franklin; la simple inspección visual de aquellos difractogramas proporcionó a Watson las claves que le faltaban para resolver finalmente la estructura del DNA. En pocas semanas Watson y Crick terminaron de encajar sus propios datos con lo que se apreciaba en los difractogramas de Franklin y elaboraron un modelo definitivo que fue publicado en el número de abril de la revista Nature. La carrera había terminado.
            El modelo propuesto por Watson y Crick, mundialmente conocido como la doble hélice (Figura 19.12), presentaba las siguientes características:
  • La molécula de DNA está formada por dos cadenas polinucleotídicas antiparalelas, es decir, si una cadena se recorre en dirección 5’—›3’, su vecina discurriría en dirección 3’—›5’.
  • Ambas cadenas se encuentran formando un arrollamiento helicoidal de tipo plectonémico, es decir, para separarlas habría que desenrollarlas girando una sobre la otra. El arrollamiento es además dextrógiro.
  • El conjunto forma una estructura cilíndrica con un diámetro constante de 2 nm.
  • Los esqueletos azúcar-fosfato de las cadenas polinucleotídicas se encuentran en el exterior de la estructura, formando lo que serían las guías de una especie de escalera de caracol.
  • Las bases nitrogenadas se proyectan desde los esqueletos azúcar-fosfato hacia el interior de la estructura y se disponen apiladas por pares formando lo que equivaldría a los peldaños de la escalera.
  • Los pares de bases nitrogenadas están formados invariablemente por una purina y una pirimidina. Además, siempre se encuentran enfrentadas adenina con timina por una parte y guanina con citosina por otra.
  • Las dos cadenas polinucleotídicas se encuentran unidas por puentes de hidrógeno entre grupos funcionales de las bases nitrogenadas que forman cada par. Cada adenina forma dos puentes de hidrógeno con la correspondiente timina y cada guanina tres con la citosina. Pares de bases diferentes a los establecidos no podrían formar puentes de hidrógeno.
  • La distancia entre cada par de bases sucesivo es de 0,34 nm. Cada vuelta completa de la hélice (paso de rosca) alberga exactamente 10 pares de nucleótidos, lo que se corresponde con una longitud de 3,4 nm. Ambas periodicidades aparecían reflejadas en los difractogramas.
            Uno de los aspectos más interesantes del modelo de Watson y Crick residía en que no sólo encajaba con los datos de difracción de RX sino que además proporcionaba una explicación para la hasta entonces desconcertante regla de Chargaff. En efecto, si todos los pares de bases eran necesariamente A-T o G-C, en cualquier muestra de DNA el número de restos de adenina debía ser igual al de timina y el de guanina al de citosina, de lo que se deduce que el número total de bases púricas debería ser igual al de bases pirimídicas. Además, este emparejamiento específico de las bases nitrogenadas podría encerrar un profundo significado biológico, pues, como Watson y Crick sugerían en su artículo en Nature, tal emparejamiento podría ser la base del mecanismo por el que el material genético creaba copias de si mismo en cada ciclo de reproducción celular. La complementariedad interna de la doble hélice, regida por la regla de Chargaff, hacía que cada una de las dos cadenas polinucleotídicas que la formaban pudiera ser utilizada comomolde para sintetizar otra con una secuencia de bases complementaria.


            La publicación del modelo de Watson y Crick en abril de 1953 y la gran difusión que tuvo en los meses posteriores diluyó rápidamente cualquier resto de escepticismo acerca del papel del DNA como material hereditario, que ya no volvió a ser discutido. Todo ello supuso una auténtica revolución en el seno de las ciencias biológicas y el nacimiento de lo que se dio en llamar biología molecular, área del conocimiento que tuvo un gran desarrollo en las décadas siguientes y que ha contribuido de forma decisiva a nuestra comprensión actual del funcionamiento de los sistemas vivos. Hay que destacar, sin embargo, que los físicos que habían desembarcado en la biología con la aspiración romántica de encontrar “otras leyes físicas” todavía desconocidas se quedaron sin su recompensa. Por el contrario, todo lo que hoy sabemos acerca de cómo los genes se replican y controlan los procesos celulares es perfectamente explicable en términos de procesos físico-químicos convencionales que ya eran conocidos a mediados del S XX. El misterio del gen, que Schrödinger proponía desvelar, no consistía más que en la simple formación y ruptura de puentes de hidrógeno entre las bases nitrogenadas del DNA.


2.5.-    ESTRUCTURAS ALTERNATIVAS DEL DNA.
            La doble hélice del DNA tal como fue descrita por Watson y Crick representa la estructura más común de esta macromolécula (la llamada forma B). Años más tarde se demostró que el DNA puede existir en al menos dos formas alternativas (la forma A y la forma Z) que difieren ligeramente de la estructura original en aspectos como las distancias entre nucleótidos sucesivos o los ángulos de enlace entre los componentes de estos nucleótidos (Figura 19.14). Sin embargo, se ha comprobado que en estas formas alternativas están presentes los rasgos esenciales del modelo de Watson y Crick, es decir, la estructura helicoidal y el emparejamiento específico de bases.
            Por otra parte, se ha podido comprobar que en algunos virus el DNA aparece en estado monocatenario (una sola cadena polinucleotídica por molécula en lugar de dos), lo que constituye una excepción a la primitiva afirmación de que el DNA es siempre una doble hélice de cadenas polinucleotídicas. Sin embargo, se trata de una “excepción que confirma la regla”, ya que incluso en estos virus el DNA pasa por un estado bicatenario transitorio, que resulta imprescindible para su replicación durante el ciclo de reproducción viral. 

2.6.-    DESNATURALIZACIÓN E HIBRIDACIÓN DEL DNA.
             La molécula de DNA es muy estable, gracias a la gran cantidad de puentes de hidrógeno que se establecen entre las bases nitrogenadas a lo largo de las cadenas polinucleotídicas y a las interacciones hidrofóbicas generadas entre los anillos aromáticos apilados de estas bases. Sin embargo, de manera similar a lo que ocurre con las proteínas, la molécula puede desestabilizarse y abandonar su conformación tridimensional característica en doble hélice como respuesta a cambios en el pH o a aumentos de temperatura. Este proceso se conoce con el nombre de desnaturalización y sucede a valores de pH próximos a 13 o temperaturas alrededor de 100 ºC .
            La temperatura a la que un 50% de la doble hélice se encuentra separada se conoce como temperatura de fusión (Tm); su valor difiere de unas muestras de DNA a otras y está en función del contenido en pares G-C. Esto es debido a que, al estar los pares G-C unidos por tres puentes de hidrógeno frente a los dos de los pares A-T, es necesaria una mayor cantidad de energía para desestabilizar una doble hélice rica en pares G-C. Así, la temperatura de fusión de una muestra de DNA es un indicador de su composición en bases nitrogenadas.
            La desnaturalización del DNA (Figura 19.15) puede seguirse experimentalmente midiendo en un espectrofotómetro la absorción de luz ultravioleta por la disolución que lo contiene. La absorción de luz ultravioleta aumenta considerablemente con la desnaturalización debido a que los anillos aromáticos de las bases nitrogenadas absorben mucha más luz de esa longitud de onda cuando se encuentran desplegadas que cuando están apiladas en el interior de la doble hélice.
            De manera análoga a lo que sucede con las proteínas, la desnaturalización del DNA es, en determinadas condiciones experimentales, reversible, siendo este proceso conocido como renaturalización. Si las cadenas polinucleotídicas que resultan de la desnaturalización se incuban a unos 65 ºC durante varias horas, se comprueba que las dobles hélices originales se reconstruyen espontáneamente. Paralelamente se produce el consiguiente descenso en la absorción de luz ultravioleta.
            La renaturalización sirvió de base para el desarrollo de las llamadas técnicas de hibridación del DNA. Si se mezclan muestras de DNA desnaturalizado procedentes de especies diferentes y se incuba la mezcla en condiciones adecuadas para que se produzca la renaturalización, una fracción de las dobles hélices obtenidas serán híbridas, es decir, con cadenas polinucleotídicas de una y otra especie. El porcentaje de hibridación será mayor cuanto más parecidas sean las secuencias de nucleótidos de ambas especies, de manera que este porcentaje puede utilizarse como un indicador del parentesco evolutivo existente entre ellas. Antes de que estuviesen disponibles las actuales técnicas de secuenciación del DNA se utilizaron con profusión las técnicas de hibridación para el análisis de dicho parentesco.

3.-      EL RNA: ESTRUCTURA Y TIPOS.
             Como ya se ha comentado con anterioridad, el conocimiento de la química elemental de los ácidos nucleicos se demoró hasta la década de los años 20 del S XX. En la década siguiente fue reconocida por P. A. Levene la existencia de dos tipos diferentes de ácido nucleico (DNA y RNA) que diferían en algunos de sus componentes moleculares (el RNA incluíaribosa y uracilo en lugar respectivamente de la desoxirribosa y la timina del DNA). En esta misma época se realizaron estudios citológicos, usando colorantes y reactivos químicos específicos, para determinar la localización intracelular de uno y otro tipo de ácido nucleico. Se comprobó que en las células eucariotas la casi totalidad del DNA celular se encuentra en el interior del núcleo mientras que la mayor parte del RNA se encuentra en el citoplasma (aunque algunas zonas del núcleo, en particular el nucléolo, también son ricas en RNA). Por otra parte, del total de RNA citoplasmático una fracción muy importante se encontraba asociado a determinadas proteínas para formar unas partículas, visibles al microscopio electrónico, que fueron denominadas ribosomas. Experimentos realizados utilizando aminoácidos marcados radiactivamente pronto demostraron que los ribosomas eran el lugar de la célula donde se llevaba a cabo la síntesis de las proteínas, por lo que ya desde entonces se asoció al RNA con este proceso. Sin embargo, hubieron de pasar todavía algunos años hasta que se comprendió cual es el papel concreto que el RNA desempeña en el mismo.

3.1.-    ESTRUCTURA Y FUNCIÓN DEL RNA.
             La estructura tridimensional del RNA difiere claramente de la del DNA. En general las moléculas de RNA son monocatenarias (una sola cadena polinucleotídica), por lo que su composición en bases nitrogenadas no se ajusta a la regla de equivalencia de Chargaff. Sin embargo, existen moléculas de RNA que, aun siendo monocatenarias, presentan tramos con secuencias de bases complementarias los cuales adoptan estructuras en doble hélice, denominadas horquillas, de características análogas a las del DNA. En ocasiones, cuando las secuencias complementarias no son contiguas, se formanbucles de bases no emparejadas dentro de las horquillas. En las dobles hélices de RNA la adenina se empareja con el uracilo, que tiene estructura similar e idénticas posibilidades de formar puentes de hidrógeno que la timina, y la guanina con la citosina.
            Hoy sabemos que la función primordial del RNA en las células consiste en servir de intermediario para transferir la información genética cifrada en el DNA a la estructura tridimensional de las proteínas en el proceso de expresión de la información genética, que analizaremos más adelante en este capítulo. De todos modos, en algunos virus el RNA constituye en sí mismo el material genético además de servir de intermediario en el proceso de síntesis de las proteínas virales. En algunos de estos virus la molécula de RNA que constituye el cromosoma viral es bicatenaria y presenta en toda su longitud estructura de doble hélice. También existen virus con cromosomas de RNA monocatenario.

3.2.-    TIPOS DE RNA.
             Existen varios tipos de RNA que difieren en el tamaño, estructura y función específica de sus moléculas. Todos ellos se sintetizan en el núcleo celular a partir de secuencias de DNA que sirven como molde y una vez sintetizados atraviesan los poros nucleares y se incorporan a sus diferentes destinos en el citoplasma.
a)     RNA ribosómico (rRNA).- Constituye alrededor del 80% del RNA celular total.  Sus moléculas son monocatenarias y de gran longitud (varios miles de nucleótidos). Algunas de ellas presentan horquillas y bucles con secuencias internas complementarias. Se encuentra en el citoplasma donde, en asociación con diferentes proteínas, forma parte estructural de los ribosomas.
b)     RNA de transferencia (tRNA).- Sus moléculas son relativamente pequeñas (75 a 90 nucleótidos de longitud). Presentan una estructura característica con horquillas y bucles que les dan el aspecto de hojas de trébol cuando se representan sobre un plano: su estructura tridimensional presenta en realidad forma de L invertida. El tRNA presenta bases nitrogenadas diferentes a las características de los ácidos nucleicos en una proporción que puede alcanzar el 10% del total. Su función consiste en transportar de manera específica a los diferentes aminoácidos hasta los ribosomas para que allí sean ensamblados en las cadenas polipeptídicas en formación. Existen alrededor de 50 tipos de tRNAs que difieren en sus secuencias de nucleótidos  y en algunos aspectos de su conformación tridimensional; sin embargo todos ellos comparten algunas características:
·       En el extremo 5’ de la cadena polinucleotídica hay un triplete de bases nitrogenadas una de las cuales es siempre guanina.
·       En el extremo 3’ la cadena polinucleotídica finaliza con la secuencia CCA y estas bases no están emparejadas. En este lugar es donde el tRNA se une a su aminoácido correspondiente.
·       La molécula presenta tres brazos cada uno de los cuales consta de una horquilla con estructura en doble hélice y un bucle formado por bases sin emparejar (Figura 19.16). Se distinguen el brazo T (por donde la molécula se une al ribosoma), el brazo D (lugar que reconocen los enzimas específicos que unen los tRNA con sus aminoácidos correspondientes) y el brazo A (cuyo bucle presenta un triplete de bases, denominado anticodon, que es complementario de otro triplete, llamado codon, que se encuentra en el RNA mensajero, siendo esta complementariedad de gran importancia en el proceso de síntesis de proteínas).
c)     RNA mensajero (mRNA).- Sus moléculas están formadas en general por varios miles de nucleótidos y tienen una estructura lineal, aunque en ocasiones presentan horquillas y bucles. Su misión es trasladar la información genética almacenada en el DNA hasta los ribosomas para que allí se exprese en forma de proteínas. Los mRNA son en general moléculas de vida muy corta, ya que una vez cumplida su misión son degradados por unos enzimas llamados ribonucleasas.
d)     RNA nucleolar (nRNA).- Se encuentra en el nucléolo, donde tiene lugar su síntesis. Una vez sintetizado se fragmenta por acción enzimática y da lugar a diferentes tipos de rRNA y tRNA.

4.-      LA REPLICACIÓN DEL DNA.
             Cada vez que una célula se reproduce por división su material genético debe ser copiado para que las dos células hijas dispongan una copia completa del mismo. Uno de los requisitos que debería cumplir una eventual molécula de la herencia, según apuntaba Schrödinger, es precisamente la capacidad para crear copias fieles de sí misma de manera que la información pudiese ser transmitida en las sucesivas generaciones celulares. Watson y Crick  se percataron, y así lo sugerían en su artículo de Nature, de que el modelo de estructura en doble hélice que habían elaborado proporcionaba las bases físico-químicas para un mecanismo de replicación del DNA. En efecto, la estricta complementariedad de bases nitrogenadas a lo largo de la doble hélice permite que cada una de las dos cadenas polinucleotídicas que la forman pueda ser utilizada como molde para sintetizar una nueva cadena complementaria. Así, desenrollando las dos cadenas de una hélice original y utilizando cada una de ellas como molde para sintetizar una nueva cadena, en la que los nucleótidos se irán añadiendo conforme a las reglas que rigen el emparejamiento de las bases, se obtendrán dos dobles hélices “hijas” idénticas, portadoras de la misma información. El mecanismo que aquí se ha esbozado fue propuesto por Watson y Crick en un artículo publicado en el número de Nature de mayo de 1953, aclarando así lo que sugerían en su artículo del mes anterior. Tal mecanismo fue conocido como replicación semiconservativa para resaltar el hecho de que cada una de las dobles hélices hijas conserva la mitad, es decir, una de las cadenas, de la doble hélice original.
            El modelo de replicación semiconservativa propuesta por Watson y Crick pareció acertado a muchos investigadores por su sencillez y elegancia. Sin embargo, se plantearon algunos modelos alternativos que no podían ser descartados a priori (Figura 19.17). Uno de ellos era el modelo dereplicación conservativa, según el cual la doble hélice original, sin perder su integridad, sirve de patrón para sintetizar una doble hélice hija totalmente nueva, de manera que la doble hélice original se conservaintacta a lo largo de las sucesivas generaciones celulares. Otro era el modelo de replicación dispersiva, según el cual la doble hélice original se descompone en infinidad de pequeños fragmentos, cada uno de los cuales sirve de molde para sintetizar un fragmento complementario siguiendo las reglas de emparejamiento de bases; a continuación los fragmentos resultantes se empalman en el orden correcto para dar lugar a dos dobles hélices hijas cada una de las cuales contiene fragmentos de la original y fragmentos de nueva síntesis.
            El modelo conservativo fue propuesto por algunos investigadores a la vista de algunas dificultades técnicas que parecía presentar el modelo semiconservativo. Estos investigadores eran de la opinión de que la doble hélice del DNA se replicaba de una manera indirecta, transfiriendo primero su información a un intermediario de otra naturaleza (probablemente una proteína), que serviría después de patrón para sintetizar una doble hélice totalmente nueva. Por otra parte, el modelo dispersivo gozaba de muy pocos partidarios, ya que la correcta ordenación de los fragmentos de DNA requeriría la presencia de una molécula distinta del propio DNA que poseyese la información necesaria para ordenarlos; ello sería equivalente a afirmar que esta molécula, y no el DNA, era en realidad el material genético, razón por la cual este modelo sólo tenía un cierto apoyo entre los pocos investigadores que seguían atribuyendo este papel a las proteínas.

4.1.-    EL EXPERIMENTO DE MESELSON Y STAHL.
             Un brillante experimento realizado por M. S. Meselson y F. W. Stahl(Figura 19.18) en 1957 demostró que el modelo semiconservativo propuesto por Watson Y Crick era el correcto. El diseño experimental  se basó en el uso de dos isótopos estables del nitrógeno: el isótopo más abundante en la naturaleza (14N) y un isótopo pesado (15N), más escaso. En primer lugar Meselson y Stahl dispusieron dos cultivos de la bacteria E. coli creciendo sobre un medio en el que la única fuente de nitrógeno era NH4Cl. En uno de los cultivos el NH4Cl contenía el isótopo normal del nitrógeno (14N) y en el otro el isótopo pesado (15N). De este modo, el isótopo correspondiente a cada medio de cultivo se incorporaba a todas las biomoléculas nitrogenadas de las bacterias que crecían en él, incluyendo los ácidos nucleicos. A continuación extrajeron el DNA de las células de uno y otro cultivo, lo mezclaron y lo sometieron a centrifugación a alta velocidad en un gradiente de densidad de CsCl. Así comprobaron que el DNA “ligero” y el DNA “pesado” que habían incorporado uno u otro isótopo se situaban en dos bandas perfectamente distinguibles en el tubo de la centrífuga (Figura 19.20).
            En una segunda fase de su experimento Meselson y Stahl transfirieron bacterias que habían estado reproduciéndose durante varias generaciones en un medio de cultivo con nitrógeno pesado a un medio de cultivo con nitrógeno ligero, de manera que, a partir del instante de la transferencia, todo el DNA que se sintetizase en las células transferidas incorporaría exclusivamente nitrógeno ligero. Seguidamente, a intervalos regulares de 20 minutos (equivalentes al período de generación de las bacterias) extrajeron el DNA de sucesivas muestras del cultivo y lo sometieron a centrifugación en gradiente de densidad de CsCl.
            El éxito del experimento de Meselson y Stahl radicó en que su diseño permitía formular predicciones sobre los resultados en función de cada uno de los tres modelos de replicación propuestos, siendo los resultados predichos perfectamente distinguibles y excluyentes entre sí.
En efecto, si el modelo de replicación fuese semiconservativo como habían predicho Watson y Crick, todo el DNA extraído tras los 20 primeros minutos consistiría en dobles hélices formadas por una cadena ligera (recién sintetizada) y otra cadena pesada (la original), lo que se traduciría en un DNA de densidad “híbrida” que en el tubo de la centrífuga ocuparía una posición intermedia entre las correspondientes al DNA “pesado” y el “ligero”. Transcurridos otros 20 minutos, es decir, en la segunda generación de bacterias tras la transferencia, la mitad de las dobles hélices serían de densidad híbrida mientras que la otra mitad serían totalmente ligeras, dando lugar en el tubo de la centrífuga a dos bandas en las posiciones correspondientes.

Si por el contrario la replicación respondiese a un modelo conservativo nunca aparecerían bandas híbridas, pues el DNA de las bacterias de la primera generación estaría compuesto por dobles hélices la mitad de las cuales serían totalmenteligeras (las recién sintetizadas) y la otra mitad totalmentepesadas (las originales), de manera que en el tubo de la centrífuga aparecería una banda ligera y otra pesada. Lo mismo ocurriría en la segunda generación de bacterias, con la única diferencia de que la proporción de hélices ligerasrespecto a hélices pesadas sería de 3:1 en lugar de 1:1, lo que se traduciría en una mayor densidad de moléculas de DNAligero en la banda correspondiente.
En el caso de que la replicación siguiese un modelo dispersivo los resultados obtenidos en la primera generación serían iguales a los que predice el modelo semiconservativo: el DNA extraído de las bacterias de la primera generación estaría formado por fragmentos ligeros y fragmentos pesados que se repartirían en una y otra cadena polinucleotídica de la doble hélice, y ello daría lugar a la aparición de una única banda en el tubo de la centrífuga que ocuparía la posición correspondiente al DNA de densidad híbrida. Esta banda híbrida persistiría en la segunda y sucesivas generaciones, aunque cabría esperar que tras varios ciclos de replicación, al ir aumentando la proporción de fragmentos ligeros con respecto a los pesados, empezasen a aparecer dobles hélices totalmente ligeras que irían formando una banda en su posición correspondiente.

Los resultados obtenidos por Meselson y Stahl se ajustaban con precisión a los predichos por el modelo de replicación semiconservativa. No obstante, dado que también eran parcialmente compatibles con el modelo dispersivo (al menos en lo que se refiere a las bandas obtenidas con el DNA de la primera generación), realizaron una posterior comprobación con el objeto de descartar definitivamente este modelo. Tomaron una nueva muestra de DNA de las bacterias de la primera generación y, antes de centrifugarlo, procedieron a desnaturalizarlo. Así, al separar físicamente las dos cadenas polinucleotídicas que integran la doble hélice deberían obtenerse dos bandas (una ligera y otra pesada) en el tubo de la centrífuga en el caso de que la replicación fuese semiconservativa, o bien una sola banda híbrida en el caso de que fuese dispersiva. Los resultados de este último experimento no dejaban lugar a dudas: Watson y Crick habían acertado también con el mecanismo que rige la replicación del DNA.

No hay comentarios:

Publicar un comentario