Algoritmos de precisión arbitraria
Constantes y funciones matemáticas
La estructura de la tabla es la siguiente:
- Valor numérico de la constante y enlace a MathWorld o a OEIS Wiki.
- LaTeX: Fórmula o serie en el formato TeX.
- Fórmula: Para utilizar en Wolfram Alpha. Si en los cálculos, ∞ demora mucho tiempo, puede cambiarse por 20000, para obtener un resultado aproximado.
- OEIS: On-Line Encyclopedia of Integer Sequences.
- Fracción continua: En el formato simple [Parte entera; frac1, frac2, frac3, ...] , suprarrayada si es periódica.
- Año: Del descubrimiento de la constante, o datos del autor.
- Formato web: Valor de la constante, en formato adecuado para los buscadores web.
- N.º: Tipo de Número
- (La tabla se puede ordenar ascendente o descendente, por cualquiera de los campos, sin más que pulsar en los títulos del encabezado).
Constantes y funciones matemáticas
Gráfico | Símbolo | LaTeX |
0,07077 60393 11528 80353
-0,68400 03894 37932 129 i Ow 1
| Constante MKB 1 · 2 · 3 | | | | lim_(2n->∞) int[1 to 2n] {exp(i*Pi*x)*x^(1/x) dx} | C | A255727 A255728 | [0;14,7,1,2,1,23,2,1,8,16,1,1,3,1,26,1,6,1,1, ...] - [0;1,2,6,13,41,112,1,25,1,1,1,1,3,13,2,1, ...] i | 2009 | 0.07077603931152880353952802183028200 -0.68400038943793212918274445999266 i |
3,05940 74053 42576 14453 Mw 1Ow 2 | Constante Doble factorial | | | | Sum[n=0 to ∞]{1/n!!} | | A143280 | [3;16,1,4,1,66,10,1,1,1,1,2,5,1,2,1,1,1,1,1,2,...] | | 3.05940740534257614453947549923327861 |
0,62481 05338 43826 58687 + 1,30024 25902 20120 419 i | Fracción continua generalizada de i | | | | i+i/(i+i/(i+i/(i+i/(i+i/(i+i/(i+i/( i+i/(i+i/(i+i/(i+i/(i+i/(i+i/(i+i/( i+i/(i+i/(i+i/(i+i/(i+i/(i+i/(i+i/( ...))))))))))))))))))))) | C A | A156590
A156548 | [i;1,i,1,i,1,i,1,i,1,i,1,i,1,i,1,i,1,i,1,i,1,i,1,i,1,i,1,i,1,..] = [0;1,i] | | 0.62481053384382658687960444744285144 + 1.30024259022012041915890982074952 i |
0,91893 85332 04672 74178 Mw 2 | Fórmula de Raabe 4 |
| | | integral_a^(a+1) {log(Gamma(x))+a-a log(a)} dx | | A075700 | [0;1,11,2,1,36,1,1,3,3,5,3,1,18,2,1,1,2,2,1,1,...] | | 0.91893853320467274178032973640561763 |
0,42215 77331 15826 62702 Mw 3 | Volumen delTetraedro de Reuleaux 5 | | | | (3*Sqrt[2] - 49*Pi + 162*ArcTan[Sqrt[2]])/12 | | A102888 | [0;2,2,1,2,2,7,4,4,287,1,6,1,2,1,8,5,1,1,1,1, ...] | | 0.42215773311582662702336591662385075 |
1,17628 08182 59917 50654 Mw 4 | Constante de Salem,conjetura de Lehmer 6 |
| | | x^10+x^9-x^7-x^6-x^5-x^4-x^3+x+1 | A | A073011 | [1;5,1,2,17,1,7,2,1,1,2,4,7,2,2,1,1,15,1,1, ... | 1983? | 1.17628081825991750654407033847403505 |
2,39996 32297 28653 32223 Mw 5
Radianes
| Ángulo áureo 7 | | | = 137.507764050037854646 ...° | (4-2*Phi)*Pi | T | A131988 | [2;2,1,1,1087,4,4,120,2,1,1,2,1,1,7,7,2,11,...] | 1907 | 2.39996322972865332223155550663361385 |
1,26408 47353 05301 11307 Mw 6 | Constante de Vardi 8 |
| | | | | A076393 | [1;3,1,3,1,2,5,54,7,1,2,1,2,3,15,1,2,1,1,2,1,...] | 1991 | 1.26408473530530111307959958416466949 |
1,5065918849 ± 0,0000000028Mw 7 | Área del fractal de Mandelbrot 9 | | | Se conjetura que el valor exacto es: = 1,506591651... | | | A098403 | [1;1,1,37,2,2,1,10,1,1,2,2,4,1,1,1,1,5,4,...] | 1912 | 1.50659177 +/- 0.00000008 |
1,61111 49258 08376 736 111···111 27224 36828 Mw 8 183213 unos | Constante Factorial exponencial | | | | | T | A080219 | [1; 1, 1, 1, 1, 2, 1, 808, 2, 1, 2, 1, 14,...] | | 1.61111492580837673611111111111111111 |
0,31813 15052 04764 13531
±1,33723 57014 30689 40 i Ow 3
| Punto fijo Super-logaritmo 10 · 11 | | |
Para un valor inicial de x distinto a 0, 1, e, e^e, e^(e^e), etc.
| -W(-1) Donde W=ProductLog Lambert W function | C | A059526 A059527 | [-i;1 +2i,1+i,6-i,1+2i,-7+3i,2i,2,1-2i,-1+i,-, ...] | | 0.31813150520476413531265425158766451 -1.33723570143068940890116214319371 i |
1,09317 04591 95490 89396 Mw 9 | Constante de Smarandache 1ª 12 | | | La función Kempner μ(n) se define como sigue:
μ(n) es el número más pequeño por el que μ(n)! es divisible por n
| | | A048799 | [1;10,1,2,1,2,1,13,3,1,6,1,2,11,4,6,2,15,1,1,...] | | 1.09317045919549089396820137014520832 |
1,64218 84352 22121 13687 Mw 10 | Constante de Lebesgue L2 13 |
| | | 1/5 + sqrt(25 - 2*sqrt(5))/Pi | T | A226655 | [1;1,1,1,3,1,6,1,5,2,2,3,1,2,7,1,3,5,2,2,1,1,...] | 1910 | 1.64218843522212113687362798892294034 |
0,82699 33431 32688 07426 Mw 11 | Disk Covering 14 | | | | 3 Sqrt[3]/(2 Pi) | T | A086089 | [0;1,4,1,3,1,1,4,1,2,2,1,1,7,1,4,4,2,1,1,1,1,...] | 1939 1949 | 0.82699334313268807426698974746945416 |
1,78723 16501 82965 93301 Mw 12 | Constante de Komornik–Loreti 15 |
| |
| FindRoot[(prod[n=0 to ∞] {1-1/(x^2^n)}+ (x-2)/(x-1))= 0, {x, 1.7}, WorkingPrecision->30] | T | A055060 | [1;1,3,1,2,3,188,1,12,1,1,22,33,1,10,1,1,7,...] | 1998 | 1.78723165018296593301327489033700839 |
0,59017 02995 08048 11302 Mw 13 | Constante de Chebyshev 16 · 17 |
| | | (Gamma(1/4)^2) /(4 pi^(3/2)) | | A249205 | [0;1,1,2,3,1,2,41,1,6,5,124,5,2,2,1,1,6,1,2,...] | | 0.59017029950804811302266897027924429 |
0,52382 25713 89864 40645 Mw 14 | Función Chi Coseno hiperbólico integral | | |
| Chi(x) | | A133746 | [0;1,1,9,1,172,1,7,1,11,1,1,2,1,8,1,1,1,1,1,...] | | 0.52382257138986440645095829438325566 |
0,62432 99885 43550 87099 Mw 15 | Constante de Golomb–Dickman18 |
| | | N[Int{n,0,1}[e^Li(n)],34] | | A084945 | [0;1,1,1,1,1,22,1,2,3,1,1,11,1,1,2,22,2,6,1,...] | 1930 y 1964 | 0.62432998854355087099293638310083724 |
0,98770 03907 36053 46013 Mw 16 | Área delimitada por la rotación excéntrica del Triángulo de Reuleaux19 | | | donde a= lado del cuadrado | 2 sqrt(3)+pi/6-3 | T | A066666 | [0;1,80,3,3,2,1,1,1,4,2,2,1,1,1,8,1,2,10,1,2,...] | 1914 | 0.98770039073605346013199991355832854 |
0,70444 22009 99165 59273 | Constante Carefree220 |
| | | N[prod[n=1 to ∞] {1 - 1/(prime(n)* (prime(n)+1))}] | | A065463 | [0;1,2,2,1,1,1,1,4,2,1,1,3,703,2,1,1,1,3,5,1,...] | | 0.70444220099916559273660335032663721 |
1,84775 90650 22573 51225 Mw 17 | Constante camino auto-evitante en red hexagonal 21 · 22 | | |
La menor raíz real de
| sqrt(2+sqrt(2)) | A | A179260 | [1;1,5,1,1,3,6,1,3,3,10,10,1,1,1,5,2,3,1,1,3,...] | | 1.84775906502257351225636637879357657 |
0,19452 80494 65325 11361 Mw 18 | 2ª Constante Du Bois Reymond 23 |
| | | (e^2-7)/2 | T | A062546 | [0;5,7,9,11,13,15,17,19,21,23,25,27,29,31,...] = [0;2p+3], p∈ℕ | | 0.19452804946532511361521373028750390 |
2,59807 62113 53315 94029 Mw 19 | Área de un hexágono de lado unitario 24 | | | | 3 sqrt(3)/2 | A | A104956 | [2;1,1,2,20,2,1,1,4,1,1,2,20,2,1,1,4,1,1,2,20,...] [2;1,1,2,20,2,1,1,4] | | 2.59807621135331594029116951225880855 |
1,78657 64593 65922 46345 Mw 20 | Constante de Silverman 25 |
| |
ø() = Función totien de Euler, σ1() = Función divisor.
| Sum[n=1 to ∞] {1/[EulerPhi(n) DivisorSigma(1,n)]} | | A093827 | [1;1,3,1,2,5,1,65,11,2,1,2,13,1,4,1,1,1,2,5,4,...] | | 1.78657645936592246345859047554131575 |
1,46099 84862 06318 35815 Mw 21 | Constante cuatro-colores de Baxter 26 | Mapamundi Coloreado 4C | |
Γ() = Función Gamma
| 3×Gamma(1/3) ^3/(4 pi^2) | | A224273 | [1;2,5,1,10,8,1,12,3,1,5,3,5,8,2,1,23,1,2,161,...] | 1970 | 1.46099848620631835815887311784605969 |
0,66131 70494 69622 33528 Mw 22 | Constante de Feller-Tornier 27 |
| | | [prod[n=1 to ∞] {1-2/prime(n)^2}] /2 + 1/2 | T ? | A065493 | [0;1,1,1,20,9,1,2,5,1,2,3,2,3,38,8,1,16,2,2,...] | 1932 | 0.66131704946962233528976584627411853 |
1,92756 19754 82925 30426 Mw 23 | Constante Tetranacci |
| | La mayor raíz real de | Root[x+x^-4-2=0] | A | A086088 | [1;1,12,1,4,7,1,21,1,2,1,4,6,1,10,1,2,2,1,7,1,...] | | 1.92756197548292530426190586173662216 |
1,00743 47568 84279 37609 Mw 24 | Constante DeVicci'sTeseracto | | | Arista del mayor cubo, dentro de un hipercubo unitario 4D.
La menor raíz real de
| Root[4*x^8-28*x^6 -7*x^4+16*x^2+16 =0] | A | A243309 | [1;134,1,1,73,3,1,5,2,1,6,3,11,4,1,5,5,1,1,48,...] | | 1.00743475688427937609825359523109914 |
0,15915 49430 91895 33576 Mw 25 | Constante A de Plouffe 28 |
| | | 1/(2 pi) | T | A086201 | [0;6,3,1,1,7,2,146,3,6,1,1,2,7,5,5,1,4,1,2,42,...] | | 0.15915494309189533576888376337251436 |
0,41245 40336 40107 59778 Mw 26 | Constante de Thue-Morse 29 | | | donde es la secuencia Thue–Morse y
donde
| | T | A014571 | [0;2,2,2,1,4,3,5,2,1,4,2,1,5,44,1,4,1,2,4,1,1,...] | | 0.41245403364010759778336136825845528 |
0,58057 75582 04892 40229 Mw 27 | Constante de Pell30 |
| | | N[1-prod[n=0 to ∞] {1-1/(2^(2n+1)}] | T ? | A141848 | [0;1,1,2,1,1,1,1,14,1,3,1,1,6,9,18,7,1,27,1,1,...] | | 0.58057755820489240229004389229702574 |
2,20741 60991 62477 96230 Mw 28 | Problema moviendo el sofá de Hammersley31 | | | ¿Cuál es el área más grande de una forma, que pueda ser maniobrada en un pasillo en forma de L y tenga de ancho la unidad ? | pi/2 + 2/pi | T | A086118 | [2;4,1,4,1,1,2,5,1,11,1,1,5,1,6,1,3,1,1,1,1,7,...] | 1967 | 2.20741609916247796230685674512980889 |
1,15470 05383 79251 52901 Mw 29 | Constante de Hermite32 | | | | 2/sqrt(3) | A | 1+ A246724 | [1;6,2,6,2,6,2,6,2,6,2,6,2,6,2,6,2,6,2,6,2,6,2,...] [1;6,2] | | 1.15470053837925152901829756100391491 |
0,63092 97535 71457 43709 Mw 30 | Dimensión fractal del Conjunto de Cantor 33 | | | | log(2)/log(3) N[3^x=2] | T | A102525 | [0;1,1,1,2,2,3,1,5,2,23,2,2,1,1,55,1,4,3,1,1,...] | | 0.63092975357145743709952711434276085 |
0,17150 04931 41536 06586 Mw 31 | Constante Hall-Montgomery 34 | | | | 1 + Pi^2/6 + 2*PolyLog[2, -Sqrt[E]] | | A143301 | [0;5,1,4,1,10,1,1,11,18,1,2,19,14,1,51,1,2,1,...] | | 0.17150049314153606586043997155521210 |
1,55138 75245 48320 39226 Mw 32 | Constante Triángulo Calabi 35 | | | | FindRoot[ 2x^3-2x^2-3x+2 ==0, {x, 1.5}, WorkingPrecision->40] | A | A046095 | [1;1,1,4,2,1,2,1,5,2,1,3,1,1,390,1,1,2,11,6,2,...] | 1946 ~ | 1.55138752454832039226195251026462381 |
0,97027 01143 92033 92574 Mw 33 | Constante de Lochs 36 |
| | | 6*ln(2)*ln(10)/Pi^2 | | A086819 | [0;1,32,1,1,1,2,1,46,7,2,7,10,8,1,71,1,37,1,1,...] | 1964 | 0.97027011439203392574025601921001083 |
1,30568 67 ≈ Mw 34 | Dimensión fractal del círculo de Apolonio 37 | |
| | | | A052483 | [0;3,2,3,16,8,10,3,1,1,2,1,3,1,2,13,1,1,4,1,5,...] | | 1.3056867 ≈ |
0,00131 76411 54853 17810 Mw 35 | Constante de Heath-Brown–Moroz38 | | | | N[prod[n=1 to ∞] {((1-1/prime(n))^7) *(1+(7*prime(n)+1) /(prime(n)^2))}] | T ? | A118228 | [0;758,1,13,1,2,3,56,8,1,1,1,1,1,143,1,1,1,2,...] | | 0.00131764115485317810981735232251358 |
0,14758 36176 50433 27417 Mw 36 | Constante gamma de Plouffe 39 | | |
| Arctan(1/2)/Pi | T | A086203 | [0;6,1,3,2,5,1,6,5,3,1,1,2,1,1,2,3,1,2,3,2,2,...] | | 0.14758361765043327417540107622474052 |
0,70523 01717 91800 96514 Mw 37 | Constante Primorial Suma de productos de inverso de primos 40 | | | | Sum[k=1 to ∞](prod[n=1 to k]{1/prime(n)}) | I | A064648 | [0;1,2,2,1,1,4,1,2,1,1,6,13,1,4,1,16,6,1,1,4,...] | | 0.70523017179180096514743168288824851 |
0,29156 09040 30818 78013 Mw 38 | Constante dimer 2D, recubrimiento con dominós 41 · 42 | |
| | N[int[-pi to pi] {arccosh(sqrt( cos(t)+3)/sqrt(2)) /(4*Pi) /, dt}] | | A143233 | [0;3,2,3,16,8,10,3,1,1,2,1,3,1,2,13,1,1,4,1,5,...] | | 0.29156090403081878013838445646839491 |
0,72364 84022 98200 00940 Mw 39 | Constante de Sarnak | | | | N[prod[k=2 to ∞] {1-(prime(k)+2) /(prime(k)^3)}] | T ? | A065476 | [0;1,2,1,1,1,1,1,1,1,4,4,1,1,1,1,1,1,1,8,2,1,1,...] | | 0.72364840229820000940884914980912759 |
0,63212 05588 28557 67840 Mw 40 | Constante de tiempo43 | | |
| lim_(n->∞) (1- !n/n!) !n=subfactorial | T | A068996 | [0;1,1,1,2,1,1,4,1,1,6,1,1,8,1,1,10,1,1,12,1,...] = [0;1,1,1,2n], n∈ℕ | | 0.63212055882855767840447622983853913 |
0.30366 30028 98732 65859 Mw 41 | Constante de Gauss-Kuzmin-Wirsing44 | | |
donde es una función analítica tal que .
| | | A038517 | [0;3,3,2,2,3,13,1,174,1,1,1,2,2,2,1,1,1,2,2,1,...] | 1973 | 0.30366300289873265859744812190155623 |
1,30357 72690 34296 39125 Mw 42 | Constante de Conway45 | | | | | A | A014715 | [1;3,3,2,2,54,5,2,1,16,1,30,1,1,1,2,2,1,14,1,...] | 1987 | 1.30357726903429639125709911215255189 |
1,18656 91104 15625 45282 Mw 43 | Constante de Khinchin-Lévy 46 |
| | | pi^2 /(12 ln 2) | | A100199 | [1;5,2,1,3,1,1,28,18,16,3,2,6,2,6,1,1,5,5,9,...] | 1935 | 1.18656911041562545282172297594723712 |
0,83564 88482 64721 05333 | Constante de Baker 47 | | | | Sum[n=0 to ∞] {((-1)^(n))/(3n+1)} | | A113476 | [0;1,5,11,1,4,1,6,1,4,1,1,1,2,1,3,2,2,2,2,1,3,...] | | 0.83564884826472105333710345970011076 |
23,10344 79094 20541 6160 Mw 44 | Serie de Kempner(0)48 | | |
| 1+1/2+1/3+1/4+1/5 +1/6+1/7+1/8+1/9 +1/11+1/12+1/13 +1/14+1/15+... | | A082839 | [23;9,1,2,3244,1,1,5,1,2,2,8,3,1,1,6,1,84,1,...] | | 23.1034479094205416160340540433255981 |
0,98943 12738 31146 95174 Mw 45 | Constante de Lebesgue 49 | | | | 4/pi^2*[(2 Sum[k=1 to ∞] {ln(k)/(4*k^2-1)}) -poligamma(1/2)] | | A243277 | [0;1,93,1,1,1,1,1,1,1,7,1,12,2,15,1,2,7,2,1,5,...] | | 0.98943127383114695174164880901886671 |
1,38135 64445 18497 79337 | Constante Beta Kneser-Mahler 50 |
| | | e^((PolyGamma(1,4/3) - PolyGamma(1,2/3) +9)/(4*sqrt(3)*Pi)) | | A242710 | [1;2,1,1,1,1,1,4,1,139,2,1,3,5,16,2,1,1,7,2,1,...] | 1963 | 1.38135644451849779337146695685062412 |
1,18745 23511 26501 05459 Mw 46 | Constante de Foias α51 | | |
La constante de Foias es el único número real tal que si x1 = α, entonces la secuencia diverge a ∞. Cuando x1 = α,
| | | A085848 | [1;5,2,1,81,3,2,2,1,1,1,1,1,6,1,1,3,1,1,4,3,2,...] | 1970 | 1.18745235112650105459548015839651935 |
2,29316 62874 11861 03150 Mw 47 | Constante de Foias β | | | | x^(x+1) = (x+1)^x | | A085846 | [2;3,2,2,3,4,2,3,2,130,1,1,1,1,1,6,3,2,1,15,1,...] | 2000 | 2.29316628741186103150802829125080586 |
0,66170 71822 67176 23515 Mw 48 | Constante de Robbins52 | | | | (4+17*2^(1/2)-6 *3^(1/2)+21*ln(1+ 2^(1/2))+42*ln(2+ 3^(1/2))-7*Pi)/105 | | A073012 | [0;1,1,1,21,1,2,1,4,10,1,2,2,1,3,11,1,331,1,4,...] | 1978 | 0.66170718226717623515583113324841358 |
0,78853 05659 11508 96106 Mw 49 | Constante de Lüroth53 |
| | | Sum[n=2 to ∞] log(n/(n-1))/n | | A085361 | [0;1,3,1,2,1,2,4,1,127,1,2,2,1,3,8,1,1,2,1,16,...] | | 0.78853056591150896106027632216944432 |
0,92883 58271 Mw 50 | Constante entre primos gemelos de JJGJJG 54 | | | | 1/4 + 1/6 + 1/12 + 1/18 + 1/30 + 1/42 + 1/60 + 1/72 + ... | | A241560 | [0; 1, 13, 19, 4, 2, 3, 1, 1] | 2014 | 0.928835827131 |
5,24411 51085 84239 62092 Mw 51 | Constante 2 Lemniscata 55 |
| | | Gamma[ 1/4 ]^2 /Sqrt[ 2 Pi ] | | A064853 | [5;4,10,2,1,2,3,29,4,1,2,1,2,1,2,1,4,9,1,4,1,2,...] | 1718 | 5.24411510858423962092967917978223883 |
0,57595 99688 92945 43964 Mw 52 | Constante Stephens56 | | | | Prod[n=1 to ∞] {1-prime(n) /(prime(n)^3-1)} | T ? | A065478 | [0;1,1,2,1,3,1,3,1,2,1,77,2,1,1,10,2,1,1,1,7,...] | ? | 0.57595996889294543964316337549249669 |
0,73908 51332 15160 64165 Mw 53 | Número de Dottie 57 | | | | cos(c)=c | T | A003957 | [0;1,2,1,4,1,40,1,9,4,2,1,15,2,12,1,21,1,17,...] | | 0.73908513321516064165531208767387340 |
0,67823 44919 17391 97803 Mw 54 | Constante Taniguchi58 | | |
| Prod[n=1 to ∞] {1 -3/prime(n)^3 +2/prime(n)^4 +1/prime(n)^5 -1/prime(n)^6} | T ? | A175639 | [0;1,2,9,3,1,2,9,11,1,13,2,15,1,1,1,2,4,1,1,1,...] | ? | 0.67823449191739197803553827948289481 |
1,35845 62741 82988 43520 Mw 55 | Constante espiral áureaWolfram Mathematica. Golden Spiral. |
| | | GoldenRatio^(2/Pi) | | A212224 | [1;2,1,3,1,3,10,8,1,1,8,1,15,6,1,3,1,1,2,3,1,1,...] | | 1.35845627418298843520618060050187945 |
2,79128 78474 77920 00329 | Raíces anidadas S5 | | |
| (sqrt(21)+1)/2 | A | A222134 | [2;1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,...] [2;1,3] | | 2.79128784747792000329402359686400424 |
1,85407 46773 01371 91843 Mw 56 | Constante Lemniscata de Gauss 59 | | |
Γ() = Función Gamma
| pi^(3/2)/(2 Gamma(3/4)^2) | | A093341 | [1;1,5,1,5,1,3,1,6,2,1,4,16,3,112,2,1,1,18,1,...] | ? | 1.85407467730137191843385034719526005 |
1,75874 36279 51184 82469 | Constante Producto infinito, con Alladi-Grinstead 60 | | | | Prod[n=2 to ∞] {(1+1/n)^(1/n)} | | A242623 | [1;1,3,6,1,8,1,4,3,1,4,1,1,1,6,5,2,40,1,387,2,...] | 1977 | 1.75874362795118482469989684865589317 |
1,73245 47146 00633 47358 Ow 4 | Constante inversa de Euler-Mascheroni | | | | 1/Integrate_ (x=0 to 1) {-log(log(1/x))} | | A098907 | [1;1,2,1,2,1,4,3,13,5,1,1,8,1,2,4,1,1,40,1,11,...] | | 1.73245471460063347358302531586082968 |
1,94359 64368 20759 20505 Mw 57 | Constante Euler Totient 61 62 | | | | zeta(2)*zeta(3) /zeta(6) | | A082695 | [1;1,16,1,2,1,2,3,1,1,3,2,1,8,1,1,1,1,1,1,1,32,...] | 1750 | 1.94359643682075920505707036257476343 |
1,49534 87812 21220 54191 | Raíz cuarta de cinco63 | | | | (5(5(5(5(5(5(5) ^1/5)^1/5)^1/5) ^1/5)^1/5)^1/5) ^1/5 ... | A | A011003 | [1;2,53,4,96,2,1,6,2,2,2,6,1,4,1,49,17,2,3,2,...] | | 1.49534878122122054191189899414091339 |
0,87228 40410 65627 97617 Mw 58 | Área Círculo de Ford64 | | |
ς() = Función zeta
| pi Zeta(3) /(4 Zeta(4)) | | | [0;1,6,1,4,1,7,5,36,3,29,1,1,10,3,2,8,1,1,1,3,...] | ? | 0.87228404106562797617519753217122587 |
1,08232 32337 11138 19151 Mw 59 | Constante Zeta(4) 65 |
| | | Sum[n=1 to ∞] {1/n^4} | T | A013662 | [1;12,6,1,3,1,4,183,1,1,2,1,3,1,1,5,4,2,7,...] | | 1.08232323371113819151600369654116790 |
1,56155 28128 08830 27491 | Raíz Triangular de 2.66 | | |
| (sqrt(17)-1)/2 | A | A222133 | [1;1,1,3,1,1,3,1,1,3,1,1,3,1,1,3,1,1,3,1,1,3,1,...] [1;1,1,3] | | 1.56155281280883027491070492798703851 |
1,45607 49485 82689 67139 Mw 60 | Constante de Backhouse 67 | | |
| 1/( FindRoot[0 == 1 + Sum[x^n Prime[n], {n, 10000}], {x, {1}}) | | A072508 | [1;2,5,5,4,1,1,18,1,1,1,1,1,2,13,3,1,2,4,16,4,...] | 1995 | 1.45607494858268967139959535111654355 |
1,43599 11241 76917 43235 Mw 61 | Constante interpolación de Lebesgue 68 · 69 | | | | 1/3 + 2*sqrt(3)/Pi | T | A226654 | [1;2,3,2,2,6,1,1,1,1,4,1,7,1,1,1,2,1,3,1,2,1,1,...] | 1902 ~ | 1.43599112417691743235598632995927221 |
1,04633 50667 70503 18098 | Constante mass Minkowski-Siegel 70 | | | | N[prod[n=1 to ∞] n! /(sqrt(2*Pi*n) *(n/e)^n *(1+1/n) ^(1/12))] | | A213080 | [1;21,1,1,2,1,1,4,2,1,5,7,2,1,20,1,1,1134,3,..] | 1867 1885 1935 | 1.04633506677050318098095065697776037 |
1,86002 50792 21190 30718 | Constante espiral de Theodorus 71 | | | | Sum[n=1 to ∞] {1/(n^(3/2) +n^(1/2))} | | A226317 | [1;1,6,6,1,15,11,5,1,1,1,1,5,3,3,3,2,1,1,2,19,...] | -460 a -399 | 1.86002507922119030718069591571714332 |
0,80939 40205 40639 13071 Mw 62 | Constante de Alladi-Grinstead72 | | | | e^{(sum[k=2 to ∞] |sum[n=1 to ∞] {1/(n k^(n+1))})-1} | | A085291 | [0;1,4,4,17,4,3,2,5,3,1,1,1,1,6,1,1,2,1,22,...] | 1977 | 0.80939402054063913071793188059409131 |
1,26185 95071 42914 87419 Mw 63 | Dimensión fractal delCopo de nieve de Koch 73 |
| | | log(4)/log(3) | T | A100831 | [1;3,1,4,1,1,11,1,46,1,5,112,1,1,1,1,1,3,1,7,...] | | 1.26185950714291487419905422868552171 |
1,22674 20107 20353 24441 Mw 64 | Constante Factorial de Fibonacci 74 | | | | prod[n=1 to ∞] {1-((sqrt(5) -3)/2)^n} | | A062073 | [1;4,2,2,3,2,15,9,1,2,1,2,15,7,6,21,3,5,1,23,...] | | 1.22674201072035324441763023045536165 |
0,85073 61882 01867 26036 Mw 65 | Constante de plegado de papel 75 ·76 | | | | N[Sum[n=0 to ∞] {8^2^n/(2^2^ (n+2)-1)},37] | | A143347 | [0;1,5,1,2,3,21,1,4,107,7,5,2,1,2,1,1,2,1,6,...] | ? | 0.85073618820186726036779776053206660 |
6,58088 59910 17920 97085 | Constante de Froda 77 |
| | | 2^e | | | [6;1,1,2,1,1,2,3,1,14,11,4,3,1,1,7,5,5,2,7,...] | | 6.58088599101792097085154240388648649 |
– 0,5 ± 0,86602 54037 84438 64676 i | Raíz cúbica de 1 78 | | | | 1, E^(2i pi/3) , E^(-2i pi/3) | CA | A010527 | - [0,5] ± [0;1,6,2,6,2,6,2,6,2,6,2,6,2,6,2,6,2,6,2,...] i - [0,5] ± [0; 1, 6, 2] i | | - 0,5 ± 0.8660254037844386467637231707529 i |
1,11786 41511 89944 97314 Mw 66 | Constante de Goh-Schmutz 79 | | | | Integrate{ log(s+1) /(E^s-1)} | | A143300 | [1;8,2,15,2,7,2,1,1,1,1,2,3,5,3,5,1,1,4,13,1,...] | | 1.11786415118994497314040996202656544 |
1,11072 07345 39591 56175 Mw 67 | Razón entre un cuadrado y la circunferencia circunscrita 80 | | | | Sum[n=1 to ∞] {(-1)^(floor((n-1)/2)) /(2n-1)} | T | A093954 | [1;9,31,1,1,17,2,3,3,2,3,1,1,2,2,1,4,9,1,3,...] | | 1.11072073453959156175397024751517342 |
2,82641 99970 67591 57554 Mw 68 | Constante de Murata81 | | | | Prod[n=1 to ∞] {1+1/(prime(n) -1)^2} | T ? | A065485 | [2;1,4,1,3,5,2,2,2,4,3,2,1,3,2,1,1,1,8,2,2,28,...] | | 2.82641999706759157554639174723695374 |
1,52362 70862 02492 10627 Mw 69 | Dimensión fractal de la frontera de la Curva del dragón 82 | | | | (log((1+(73-6 sqrt(87))^1/3+ (73+6 sqrt(87))^1/3) /3))/ log(2))) | T | | [1;1,1,10,12,2,1,149,1,1,1,3,11,1,3,17,4,1,...] | | 1.52362708620249210627768393595421662 |
1,30637 78838 63080 69046 Mw 70 | Constante de Mills 83 | | Es primo | | Nest[ NextPrime[#^3] &, 2, 7]^(1/3^8) | | A051021 | [1;3,3,1,3,1,2,1,2,1,4,2,35,21,1,4,4,1,1,3,2,...] | 1947 | 1.30637788386308069046861449260260571 |
2,02988 32128 19307 25004 Mw 71 | Volumen hiperbólico del Complemento del Nudo en Forma de Ocho 84 | | |
| 6 integral[0 to pi/3] {log(1/(2 sin (n)))} | | A091518 | [2;33,2,6,2,1,2,2,5,1,1,7,1,1,1,113,1,4,5,1,...] | | 2.02988321281930725004240510854904057 |
1,46707 80794 33975 47289 Mw 72 | Constante de Porter85 |
| |
| 6*ln2/Pi^2(3*ln2+ 4 EulerGamma- WeierstrassZeta'(2) *24/Pi^2-2)-1/2 | | A086237 | [1;2,7,10,1,2,38,5,4,1,4,12,5,1,5,1,2,3,1,...] | 1974 | 1.46707807943397547289779848470722995 |
1,85193 70519 82466 17036 Mw 73 | Constante de Gibbs 86 | | Integral senoidal |
| SinIntegral[Pi] | | A036792 | [1;1,5,1,3,15,1,5,3,2,7,2,1,62,1,3,110,1,39,...] | | 1.85193705198246617036105337015799136 |
1,78221 39781 91369 11177 Mw 74 | Constante de Grothendieck 87 |
| | | pi/(2 log(1+sqrt(2))) | | A088367 | [1;1,3,1,1,2,4,2,1,1,17,1,12,4,3,5,10,1,1,3,...] | | 1.78221397819136911177441345297254934 |
1,74540 56624 07346 86349 Mw 75 | Constante media armónica de Khinchin88 | | |
| (log 2)/ (sum[n=1 to ∞] {1/n log(1+ 1/(n(n+2))} | | A087491 | [1;1,2,1,12,1,5,1,5,13,2,13,2,1,9,1,6,1,3,1,...] | | 1.74540566240734686349459630968366106 |
0,10841 01512 23111 36151 Mw 76 | Constante de Trott
| | |
| Trott Constant | | A039662 | [0;9,4,2,5,1,2,2,3,1,1,1,3,6,1,5,1,1,2,...] | | 0.10841015122311136151129081140641509 |
1,45136 92348 83381 05028 Mw 77 | Constante de Ramanujan–Soldner90 · 91 | | |
| FindRoot[li(x) = 0] | I | A070769 | [1;2,4,1,1,1,3,1,1,1,2,47,2,4,1,12,1,1,2,2,1,...] | 1792 a 1809 | 1.45136923488338105028396848589202744 |
0,64341 05462 88338 02618 Mw 78 | Constante de Cahen92 | | |
| | T | A118227 | [0; 1, 1, 1, 4, 9, 196, 16641, 639988804, ...] | 1891 | 0.64341054628833802618225430775756476 |
-4,22745 35333 76265 408 Mw 79 | Digamma (¼) 93 | | | | -EulerGamma -\pi/2 -3 log 2 | | A020777 | -[4;4,2,1,1,10,1,5,9,11,1,22,1,1,14,1,2,1,4,...] | | -4,2274535333762654080895301460966835 |
1,77245 38509 05516 02729 Mw 80 | Constante de Carlson-Levin94 |
| | | sqrt (pi) | T | A002161 | [1;1,3,2,1,1,6,1,28,13,1,1,2,18,1,1,1,83,1,...] | | 1.77245385090551602729816748334114518 |
0,23571 11317 19232 93137 Mw 81 | Constante de Copeland-Erdős95 | | | | sum[n=1 to ∞] {prime(n) /(n+(10^ sum[k=1 to n]{floor (log_10 prime(k))}))} | I | A033308 | [0;4,4,8,16,18,5,1,1,1,1,7,1,1,6,2,9,58,1,3,...] | | 0.23571113171923293137414347535961677 |
2,09455 14815 42326 59148 Mw 82 | Constante de Wallis96 | | | | (((45-sqrt(1929)) /18))^(1/3)+ (((45+sqrt(1929)) /18))^(1/3) | A | A007493 | [2;10,1,1,2,1,3,1,1,12,3,5,1,1,2,1,6,1,11,4,...] | 1616 a 1703 | 2.09455148154232659148238654057930296 |
0,28674 74284 34478 73410 Mw 83 | Constante Strongly Carefree97 | | | | N[ prod[k=1 to ∞] {1 - (3*prime(k)-2) /(prime(k)^3)}] | | A065473 | [0;3,2,19,3,12,1,5,1,5,1,5,2,1,1,1,1,1,3,7,...] | | 0.28674742843447873410789271278983845 |
0,64624 54398 94813 30426 Mw 84 | Constante de Masser-Gramain 98 | | |
β() = Función beta, Γ() = Función Gamma
| Pi/4*(2*Gamma + 2*Log[2] + 3*Log[Pi] - 4 Log[Gamma[1/4]]) | | A086057 | [0;1,1,1,4,1,3,2,3,9,1,33,1,4,3,3,5,3,1,3,4,...] | | 0.64624543989481330426647339684579279 |
0,54325 89653 42976 70695 Mw 85 | Constante de Bloch-Landau 99 | | | | gamma(1/3) *gamma(5/6) /gamma(1/6) | | A081760 | [0;1,1,5,3,1,1,2,1,1,6,3,1,8,11,2,1,1,27,4,...] | 1929 | 0.54325896534297670695272829530061323 |
0,34053 73295 50999 14282 Mw 86 | Constante de Pólya Random Walk100 | | |
| 1-16*Sqrt[2/3]*Pi^3 /((Gamma[1/24] *Gamma[5/24] *Gamma[7/24] *Gamma[11/24]) | | A086230 | [0;2,1,14,1,3,8,1,5,2,7,1,12,1,5,59,1,1,1,3,...] | | 0.34053732955099914282627318443290289 |
0,35323 63718 54995 98454 Mw 87 | Constante de Hafner-Sarnak-McCurley (1)101 | | | | prod[k=1 to ∞] {1-(1-prod[j=1 to n] {1-prime(k)^-j})^2} | | A085849 | [0;2,1,4,1,10,1,8,1,4,1,2,1,2,1,2,6,1,1,1,3,...] | 1993 | 0.35323637185499598454351655043268201 |
0,74759 79202 53411 43517 Mw 88 | Constante Parking de Rényi102 | | | | [e^(-2*Gamma)] * Int{n,0,∞}[ e^(- 2*Gamma(0,n)) /n^2] | | A050996 | [0;1,2,1,25,3,1,2,1,1,12,1,2,1,1,3,1,2,1,43,...] | 1958 | 0.74759792025341143517873094383017817 |
0,60792 71018 54026 62866 Mw 89 | Constante de Hafner-Sarnak-McCurley (2)103 | | | | Prod{n=1 to ∞} (1-1/prime(n)^2) | T | A059956 | [0;1,1,1,1,4,2,4,7,1,4,2,3,4,10,1,2,1,1,1,...] | | 0.60792710185402662866327677925836583 |
0,12345 67891 01112 13141 Mw 90 | Constante de Champernowne104 | | | | | T | A033307 | [0;8,9,1,149083,1,1,1,4,1,1,1,3,4,1,1,1,15,...] | 1933 | 0.12345678910111213141516171819202123 |
0,76422 36535 89220 66299 Mw 91 | Constante de Landau-Ramanujan105 | | | | | T ? | A064533 | [0;1,3,4,6,1,15,1,2,2,3,1,23,3,1,1,3,1,1,6,4,...] | 1908 | 0.76422365358922066299069873125009232 |
1,58496 25007 21156 18145 Mw 92 | Dimensión Hausdorfdel triángulo de Sierpinski106 | | | | ( Sum[n=0 to ∞] {1/(2^(2n+1)(2n+1))})/ ( Sum[n=0 to ∞] {1/(3^(2n+1)(2n+1))}) | T | A020857 | [1;1,1,2,2,3,1,5,2,23,2,2,1,1,55,1,4,3,1,1,...] | | 1.58496250072115618145373894394781651 |
0,11000 10000 00000 00000 0001 Mw 93 | Número de Liouville107 |
| | | Sum[n=1 to ∞] {10^(-n!)} | T | A012245 | [1;9,1,999,10,9999999999999,1,9,999,1,9] | | 0.11000100000000000000000100... |
0,46364 76090 00806 11621 | Serie de Machin-Gregory108 | | | | Sum[n=0 to ∞] {(-1)^n (1/2) ^(2n+1)/(2n+1)} | I | A073000 | [0;2,6,2,1,1,1,6,1,2,1,1,2,10,1,2,1,2,1,1,1,...] | | 0.46364760900080611621425623146121440 |
1,27323 95447 35162 68615 | Serie de Ramanujan-Forsyth 109 | | | | Sum[n=0 to ∞] {[(2n-3)!! /(2n)!!]^2} | I | A088538 | [1;3,1,1,1,15,2,72,1,9,1,17,1,2,1,5,1,1,10,...] | | 1.27323954473516268615107010698011489 |
15,15426 22414 79264 1897 Mw 94 | Constante exponencial reiterado110 | | | | Sum[n=0 to ∞] {(e^n)/n!} | | A073226 | [15;6,2,13,1,3,6,2,1,1,5,1,1,1,9,4,1,1,1,6,7,...] | | 15.1542622414792641897604302726299119 |
36,46215 96072 07911 77099 | Pi elevado a pi 111 |
| | | pi^pi | | A073233 | [36;2,6,9,2,1,2,5,1,1,6,2,1,291,1,38,50,1,2,...] | | 36.4621596072079117709908260226921236 |
0,53964 54911 90413 18711 | Constante de Ioachimescu 112 | | | | γ +N [sum[n=1 to ∞] {((-1)^(2n) gamma_n) /(2^n n!)}] | | 2- A059750 | [0;1,1,5,1,4,6,1,1,2,6,1,1,2,1,1,1,37,3,2,1,...] | | 0.53964549119041318711050084748470198 |
2,58498 17595 79253 21706 Mw 95 | Constante de Sierpiński 113 | | |
| -Pi Log[Pi]+2 Pi EulerGamma +4 Pi Log [Gamma[3/4]] | | A062089 | [2;1,1,2,2,3,1,3,1,9,2,8,4,1,13,3,1,15,18,1,...] | 1907 | 2.58498175957925321706589358738317116 |
1,83928 67552 14161 13255 | Constante Tribonacci114 | | | | (1/3)*(1+(19+3 *sqrt(33))^(1/3) +(19-3 *sqrt(33))^(1/3)) | A | A058265 | [1;1,5,4,2,305,1,8,2,1,4,6,14,3,1,13,5,1,7,...] | | 1.83928675521416113255185256465328660 |
0,69220 06275 55346 35386 Mw 96 | Valor mínimo de la función ƒ(x) = xx 115 | | |
= Inverso de: Número de Steiner
| e^(-1/e) | | A072364 | [0;1,2,4,55,27,1,1,16,9,3,2,8,3,2,1,1,4,1,9,...] | | 0.69220062755534635386542199718278976 |
0,70710 67811 86547 52440
+0,70710 67811 86547 52440 i
| Raíz cuadrada de i 116 | | | | (1+i)/(sqrt 2) | C A | A010503
A010503 | [0;1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,..] = [0;1,2,...] [0;1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,..] i = [0;1,2,...] i | | 0.70710678118654752440084436210484903 + 0.70710678118654752440084436210484 i |
1,15636 26843 32269 71685 Mw 97 | Constante de recurrencia cúbica 117 |
| | | prod[n=1 to ∞] {n ^(1/3)^n} | | A123852 | [1;6,2,1,1,8,13,1,3,2,2,6,2,1,2,1,1,1,10,33,...] | | 1.15636268433226971685337032288736935 |
1,66168 79496 33594 12129 Mw 98 | Recurrencia cuadrática de Somos118 | | | | prod[n=1 to ∞] {n ^(1/2)^n} | T ? | A065481 | [1;1,1,1,21,1,1,1,6,4,2,1,1,2,1,3,1,13,13,...] | | 1.66168794963359412129581892274995074 |
0,95531 66181 24509 27816 | Ángulo mágico119 | | | | arctan(sqrt(2)) | T | A195696 | [0;1,21,2,1,1,1,2,1,2,2,4,1,2,9,1,2,1,1,1,3,...] | | 0.95531661812450927816385710251575775 |
0,59634 73623 23194 07434 Mw 99 | Constante de Euler-Gompertz 120 | | | | N[int[0 to ∞] {(e^-n)/(1+n)}] | I | A073003 | [0;1,1,2,10,1,1,4,2,2,13,2,4,1,32,4,8,1,1,1,...] | | 0.59634736232319407434107849936927937 |
0,69777 46579 64007 98200 Mw 100 | Constante de fracción continua, función de Bessel 121 | | | | (Sum {n=0 to ∞} n/(n!n!)) / (Sum {n=0 to ∞} 1/(n!n!)) | I | A052119 | [0;1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,...] = [0;p+1], p∈ℕ | | 0.69777465796400798200679059255175260 |
0,36651 29205 81664 32701 | Mediana distribución de Gumbel 122 | | | | -ln(ln(2)) | | A074785 | [0;2,1,2,1,2,6,1,6,6,2,2,2,1,12,1,8,1,1,3,1,...] | | 0.36816512920566432701243915823266947 |
0,56714 32904 09783 87299 Mw 101 | Constante Omega, función W(1) de Lambert 123 | | | | Sum[n=1 to ∞] {(-n)^(n-1)/n!} | T | A030178 | [0;1,1,3,4,2,10,4,1,1,1,1,2,7,306,1,5,1,2,1,...] | 1728 a 1777 | 0.56714329040978387299996866221035555 |
0.69034 71261 14964 31946 | Límite superior exponencial iterado124 | | | | 2^-3^-4^-5^-6^ -7^-8^-9^-10^ -11^-12^-13 … | | A242760 | [0;1,2,4,2,1,3,1,2,2,1,4,1,2,4,3,1,1,10,1,3,2,...] | | 0.69034712611496431946732843846418942 |
0,65836 55992 | Límite inferior exponencial iterado125 | | | | 2^-3^-4^-5^-6^ -7^-8^-9^-10^ -11^-12 … | | | [0;1,1,1,12,1,2,1,1,4,3,1,1,2,1,2,1,51,2,2,1,...] | | 0.6583655992... |
2,71828 18284 59045 23536 Mw 102 | Número e, constante de Euler 126 | | | | Sum[n=0 to ∞] {1/n!} | T | A001113 | [2;1,2,1,1,4,1,1,6,1,1,8,1,1,10,1,1,12,1,...] = [2;1,2p,1], p∈ℕ | 1618 | 2.71828182845904523536028747135266250 |
2,74723 82749 32304 33305 | Raíces anidadas de Ramanujan R5 127 | | | | (2+sqrt(5) +sqrt(15 -6 sqrt(5)))/2 | A | | [2;1,2,1,21,1,7,2,1,1,2,1,2,1,17,4,4,1,1,4,2,...] | | 2.74723827493230433305746518613420282 |
2,23606 79774 99789 69640Mw 103 | Raíz cuadrada de cinco Suma de Gauss 128 | | | | Sum[k=0 to 4] {e^(2k^2 pi i/5)} | A | A002163 | [2;4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,...] = [2;4,...] | | 2.23606797749978969640917366873127624 |
1,09864 19643 94156 48573 Mw 104 | Constante París | | | con y |
| | A105415 | [1;10,7,3,1,3,1,5,1,4,2,7,1,2,3,22,1,2,5,2,1,...] | | 1.09864196439415648573466891734359621 |
0,11494 20448 53296 20070 Mw 105 | Constante de Kepler–Bouwkamp 129 | | | | prod[n=3 to ∞] {cos(pi/n)} |
| A085365 | [0;8,1,2,2,1,272,2,1,41,6,1,3,1,1,26,4,1,1,...] | | 0.11494204485329620070104015746959874 |
1,28242 71291 00622 63687 Mw 106 | Constante de Glaisher–Kinkelin 130 |
| | | e^(1/2-zeta´{-1}) | T ? | A074962 | [1;3,1,1,5,1,1,1,3,12,4,1,271,1,1,2,7,1,35,...] | 1878 | 1.28242712910062263687534256886979172 |
3,62560 99082 21908 31193 Mw 107 | Gamma(1/4) 131 | | | | 4(1/4)! | T | A068466 | [3;1,1,1,2,25,4,9,1,1,8,4,1,6,1,1,19,1,1,4,1,...] | 1729 | 3.62560990822190831193068515586767200 |
1,78107 24179 90197 98523 Mw 108 | Exp.gamma por función G-Barnes 132 | | |
| Prod[n=1 to ∞] {e^(1/n)}/{1 + 1/n} | | A073004 | [1;1,3,1,1,3,5,4,1,1,2,2,1,7,9,1,16,1,1,1,2,...] | 1900 | 1,78107241799019798523650410310717954 |
0,18785 96424 62067 12024 Mw 109 | MRB Constant, Marvin Ray Burns 133 134 135 | | | | Sum[n=1 to ∞] {(-1)^n (n^(1/n)-1)} | | A037077 | [0;5,3,10,1,1,4,1,1,1,1,9,1,1,12,2,17,2,2,1,...] | 1999 | 0.18785964246206712024851793405427323 |
1,01494 16064 09653 62502 Mw 110 | Constante de Gieseking 136 | | |
| sqrt(3)*3/4 *(1 -Sum[n=0 to ∞] {1/((3n+2)^2)} +Sum[n=1 to ∞] {1/((3n+1)^2)}) | | A143298 | [1;66,1,12,1,2,1,4,2,1,3,3,1,4,1,56,2,2,11,...] | 1912 | 1.01494160640965362502120255427452028 |
2,62205 75542 92119 81046 Mw 111 | Constante Lemniscata137 | | | | 4 sqrt(2/pi) ((1/4)!)^2 | T | A062539 | [2;1,1,1,1,1,4,1,2,5,1,1,1,14,9,2,6,2,9,4,1,...] | 1798 | 2.62205755429211981046483958989111941 |
0,83462 68416 74073 18628 Mw 112 | Constante de Gauss138 |
| | | (4 sqrt(2) ((1/4)!)^2) /pi^(3/2) | T | A014549 | [0;1,5,21,3,4,14,1,1,1,1,1,3,1,15,1,3,7,1,...] | 1799 | 0.83462684167407318628142973279904680 |
0,00787 49969 97812 3844 Mw 113 | Constante de Chaitin139 |
| |
Ver también: Problema de la parada
| | T | A100264 | [0; 126, 1, 62, 5, 5, 3, 3, 21, 1, 4, 1] | 1975 | 0.0078749969978123844 |
2,80777 02420 28519 36522 Mw 114 | Constante Fransén–Robinson 140 |
| | | N[int[0 to ∞] {1/Gamma(x)}] | | A058655 | [2;1,4,4,1,18,5,1,3,4,1,5,3,6,1,1,1,5,1,1,1...] | 1978 | 2.80777024202851936522150118655777293 |
1,01734 30619 84449 13971 Mw 115 | Zeta(6) 141 | | |
| Prod[n=1 to ∞] {1/(1 -prime(n)^-6)} | T | A013664 | [1;57,1,1,1,15,1,6,3,61,1,5,3,1,6,1,3,3,6,1,...] | | 1.01734306198444913971451792979092052 |
1,64872 12707 00128 14684 Ow 5 | Raíz cuadrada delnúmero e 142 |
| | | sum[n=0 to ∞] {1/(2^n n!)} | T | A019774 | [1;1,1,1,5,1,1,9,1,1,13,1,1,17,1,1,21,1,1,...] = [1;1,1,1,4p+1], p∈ℕ | | 1.64872127070012814684865078781416357 |
i ... Mw 116
| Número imaginario143 | | | | sqrt(-1) | CI | | | 1501 à 1576 |
i
|
4,81047 73809 65351 65547 | Constante de John 144 |
| | | e^(π/2) | T | A042972 | [4;1,4,3,1,1,1,1,1,1,1,1,7,1,20,1,3,6,10,3,...] | | 4.81047738096535165547303566670383313 |
0.49801 56681 18356 04271
0.15494 98283 01810 68512 i
| Factorial de i145 | | | | Gamma(1+i) | C | A212877 A212878 | [0;6,2,4,1,8,1,46,2,2,3,5,1,10,7,5,1,7,2,...] - [0;2,125,2,18,1,2,1,1,19,1,1,1,2,3,34,...] i | | 0.49801566811835604271369111746219809 - 0.15494982830181068512495513048388 i |
0,43828 29367 27032 11162
0,36059 24718 71385 485 i Mw 117
| Tetración infinita de i146 |
| | | i^i^i^... | C | A077589 A077590 | [0;2,3,1,1,4,2,2,1,10,2,1,3,1,8,2,1,2,1, ...] + [0;2,1,3,2,2,3,1,5,5,1,2,1,10,10,6,1,1...] i | | 0.43828293672703211162697516355126482 + 0.36059247187138548595294052690600 i |
0,56755 51633 06957 82538 | Módulo de la Tetración infinita dei147 | | | | Mod(i^i^i^...) | | A212479 | [0;1,1,3,4,1,58,12,1,51,1,4,12,1,1,2,2,3,...] | | 0.56755516330695782538461314419245334 |
0,26149 72128 47642 78375 Mw 118 | Constante de Meissel-Mertens 148 | | | | gamma+ Sum[n=1 to ∞] {ln(1-1/prime(n)) +1/prime(n)} | | A077761 | [0;3,1,4,1,2,5,2,1,1,1,1,13,4,2,4,2,1,33,296,...] | 1866 y 1873 | 0.26149721284764278375542683860869585 |
1,92878 00... Mw 119 | Constante de Wright149 | | | = primos: =3, =13, =16381, | | | A086238 | [1; 1, 13, 24, 2, 1, 1, 3, 1, 1, 3] | | 1.9287800.. |
0,37395 58136 19202 28805 Mw 120 | Constante de Artin 150 | | | | Prod[n=1 to ∞] {1-1/(prime(n) (prime(n)-1))} | | A005596 | [0;2,1,2,14,1,1,2,3,5,1,3,1,5,1,1,2,3,5,46,...] | 1999 | 0.37395581361920228805472805434641641 |
4,66920 16091 02990 67185 Mw 121 | Constante δ de Feigenbaum δ 151 | | |
| | | A006890 | [4;1,2,43,2,163,2,3,1,1,2,5,1,2,3,80,2,5,...] | 1975 | 4.66920160910299067185320382046620161 |
2,50290 78750 95892 82228 Mw 122 | Constante α de Feigenbaum 152 | | | | | | A006891 | [2;1,1,85,2,8,1,10,16,3,8,9,2,1,40,1,2,3,...] | 1979 | 2.50290787509589282228390287321821578 |
5,97798 68121 78349 12266 Mw 123 | Constante hexagonal Madelung 2 153 |
| | | Pi Log[3]Sqrt[3] | | A086055 | [5;1,44,2,2,1,15,1,1,12,1,65,11,1,3,1,1,...] | | 5.97798681217834912266905331933922774 |
0,96894 61462 59369 38048 | Constante Beta(3) 154 | | | | Sum[n=1 to ∞] {(-1)^(n+1) /(-1+2n)^3} | T | A153071 | [0;1,31,4,1,18,21,1,1,2,1,2,1,3,6,3,28,1,...] | | 0.96894614625936938048363484584691860 |
1,90216 05831 04 Mw 124 | Constante de Brun 2 = Σ inverso primos gemelos 155 | | | | N[prod[n=2 to 0,870∞] [1-1/(prime(n) -1)^2]] | | A065421 | [1; 1, 9, 4, 1, 1, 8, 3, 4, 4, 2, 2] | 1919 | 1.90216058310 |
0,87058 83799 75 Mw 125 | Constante de Brun 4 = Σ inverso primos gemelos 156 |
| | | | | A213007 | [0; 1, 6, 1, 2, 1, 2, 956, 3, 1, 1] | 1919 | 0.87058837997 |
22,45915 77183 61045 47342 | pi^e 157 |
| | | pi^e | | A059850 | [22;2,5,1,1,1,1,1,3,2,1,1,3,9,15,25,1,1,5,...] | | 22.4591577183610454734271522045437350 |
3,14159 26535 89793 23846 Mw 126 | Número π, constante de Arquímedes 158·159 | | | | Sum[n=0 to ∞] {(-1)^n 4/(2n+1)} | T | A000796 | [3;7,15,1,292,1,1,1,2,1,3,1,14,2,1,1,2,2,2,...] | -250 ~ | 3.14159265358979323846264338327950288 |
0,28878 80950 86602 42127 Mw 127 | Flajolet and Richmond160 |
| | | prod[n=1 to ∞] {1-1/2^n} | | A048651 | [0;3,2,6,4,1,2,1,9,2,1,2,3,2,3,5,1,2,1,1,6,1,...] | 1992 | 0.28878809508660242127889972192923078 |
0,06598 80358 45312 53707 Mw 128 | Límite inferior deTetración 161 | | | | 1/(e^e) | | A073230 | [0;15,6,2,13,1,3,6,2,1,1,5,1,1,1,9,4,1,1,1,...] | | 0.06598803584531253707679018759684642 |
0,20787 95763 50761 90854 Mw 129 | i^i 162 |
| | | e^(-pi/2) | T | A049006 | [0;4,1,4,3,1,1,1,1,1,1,1,1,7,1,20,1,3,6,10,...] | 1746 | 0.20787957635076190854695561983497877 |
0,31830 98861 83790 67153 Mw 130 | Inverso de Pi,Ramanujan163 |
| | | 2 sqrt(2)/9801 *Sum[n=0 to ∞] {((4n)!/n!^4)*(1103+ 26390n)/396^(4n)} | T | A049541 | [0;3,7,15,292,1,1,1,2,1,3,1,14,2,1,1,2,2,2,...] | | 0.31830988618379067153776752674502872 |
0,63661 97723 67581 34307 Mw 131
| Constante de Buffon164 | Aguja interseca línea | |
| 2/Pi | T | A060294 | [0;1,1,1,3,31,1,145,1,4,2,8,1,6,1,2,3,1,4,...] | 1540 a 1603 | 0.63661977236758134307553505349005745 |
0,47494 93799 87920 65033 Mw 132 | Constante deWeierstrass 165 |
| | | (E^(Pi/8) Sqrt[Pi]) /(4 2^(3/4) (1/4)!^2) | | A094692 | [0;2,9,2,11,1,6,1,4,6,3,19,9,217,1,2,4,8,6...] | 1872 ? | 0.47494937998792065033250463632798297 |
0,57721 56649 01532 86060 Mw 133 | Constante de Euler-Mascheroni166 | | | | sum[n=1 to ∞] |sum[k=0 to ∞] {((-1)^k)/(2^n+k)} | | A001620 | [0;1,1,2,1,2,1,4,3,13,5,1,1,8,1,2,4,1,1,40,1,...] | 1735 | 0.57721566490153286060651209008240243 |
1,70521 11401 05367 76428 Mw 134 | Constante de Niven167 | | | | 1+ Sum[n=2 to ∞] {1-(1/Zeta(n))} | | A033150 | [1;1,2,2,1,1,4,1,1,3,4,4,8,4,1,1,2,1,1,11,1,...] | 1969 | 1.70521114010536776428855145343450816 |
0,60459 97880 78072 61686 Mw 135 | Relación entre el área de un triángulo equilátero y su círculo inscrito. | | |
Serie de Dirichlet
| Sum[1/(n Binomial[2 n, n]) , {n, 1, ∞}] | T | A073010 | [0;1,1,1,1,8,10,2,2,3,3,1,9,2,5,4,1,27,27,6,6,...] | | 0.60459978807807261686469275254738524 |
3,24697 96037 17467 06105 Mw 136 | Constante Silver de Tutte–Beraha 168 | | | | 2+2 cos(2Pi/7) | A | A116425 | [3;4,20,2,3,1,6,10,5,2,2,1,2,2,1,18,1,1,3,2,...] | | 3.24697960371746706105000976800847962 |
0,69314 71805 59945 30941 Mw 137 | Logaritmo natural de 2 | | | | Sum[n=1 to ∞] {(-1)^(n+1)/n} | T | A002162 | [0;1,2,3,1,6,3,1,1,2,1,1,1,1,3,10,1,1,1,2,1,1,...] | 1550 a 1617 | 0.69314718055994530941723212145817657 |
0,66016 18158 46869 57392 Mw 138 | Constante de los primos gemelos 169 |
| | | prod[p=3 to ∞] {p(p-2)/(p-1)^2 | | A005597 | [0;1,1,1,16,2,2,2,2,1,18,2,2,11,1,1,2,4,1,...] | 1922 | 0.66016181584686957392781211001455577 |
0,66274 34193 49181 58097 Mw 139 | Constante límite de Laplace170 | | | | (x e^sqrt(x^2+1)) /(sqrt(x^2+1)+1) = 1 | | A033259 | [0;1,1,1,27,1,1,1,8,2,154,2,4,1,5,1,1,2,1601,...] | 1782 ~ | 0.66274341934918158097474209710925290 |
0,28016 94990 23869 13303 Mw 140 | Constante de Bernstein171 |
| | | 1/(2 sqrt(pi)) | T | A073001 | [0;3,1,1,3,9,6,3,1,3,14,34,2,1,1,60,2,2,1,1,...] | 1913 | 0.28016949902386913303643649123067200 |
0,78343 05107 12134 40705 Mw 141 | Sophomore's Dream1Johann Bernoulli 172 | | | | Sum[n=1 to ∞] {-(-1)^n /n^n} | | A083648 | [0;1,3,1,1,1,1,1,1,2,4,7,2,1,2,1,1,1,2,1,14,...] | 1697 | 0.78343051071213440705926438652697546 |
1,29128 59970 62663 54040 Mw 142 | Sophomore's Dream 2Johann Bernoulli173 | | | | Sum[n=1 to ∞] {1/(n^n)} | | A073009 | [1;3,2,3,4,3,1,2,1,1,6,7,2,5,3,1,2,1,8,1,2,4,...] | 1697 | 1.29128599706266354040728259059560054 |
0,82246 70334 24113 21823 Mw 143 | Constante Nielsen-Ramanujan174 |
| | | Sum[n=1 to ∞] {((-1)^(n+1))/n^2} | T | A072691 | [0;1,4,1,1,1,2,1,1,1,1,3,2,2,4,1,1,1,1,1,1,4...] | 1909 | 0.82246703342411321823620758332301259 |
0,78539 81633 97448 30961 Mw 144 | Beta(1) 175 | | | | Sum[n=0 to ∞] {(-1)^n/(2n+1)} | T | A003881 | [0; 1,3,1,1,1,15,2,72,1,9,1,17,1,2,1,5,...] | 1805 a 1859 | 0.78539816339744830961566084581987572 |
0,91596 55941 77219 01505 Mw 145 | Constante de Catalan176 177 178 |
| | | Sum[n=0 to ∞] {(-1)^n/(2n+1)^2} | T ? | A006752 | [0;1,10,1,8,1,88,4,1,1,7,22,1,2,3,26,1,11,...] | 1864 | 0.91596559417721901505460351493238411 |
1,05946 30943 59295 26456 Ow 7 | Intervalo entre semitonos de laescala musical 179 180 |
| |
| 2^(1/12) | A | A010774 | [1;16,1,4,2,7,1,1,2,2,7,4,1,2,1,60,1,3,1,2,...] | | 1.05946309435929526456182529494634170 |
1,13198 82487 943 Mw 146 | Constante de Viswanath 181 | | | donde an = Sucesión de Fibonacci | lim_(n->∞) |a_n|^(1/n) | T ? | A078416 | [1;7,1,1,2,1,3,2,1,2,1,8,1,5,1,1,1,9,1,...] | 1997 | 1.1319882487943 ... |
1,20205 69031 59594 28539 Mw 147 | Constante de Apéry182 | | |
| Sum[n=1 to ∞] {1/n^3} | I | A010774 | [1;4,1,18,1,1,1,4,1,9,9,2,1,1,1,2,7,1,1,7,11,...] | 1979 | 1.20205690315959428539973816151144999 |
1,22541 67024 65177 64512 Mw 148 | Gamma(3/4) 183 |
| | | (-1+3/4)! | | A068465 | [1;4,2,3,2,2,1,1,1,2,1,4,7,1,171,3,2,3,1,1,8,...] | | 1.22541670246517764512909830336289053 |
1,23370 05501 36169 82735 Mw 149 | Constante de Favard184 | | | | sum[n=1 to ∞] {1/((2n-1)^2)} | T | A111003 | [1;4,3,1,1,2,2,5,1,1,1,1,2,1,2,1,10,4,3,1,1,...] | 1902 a 1965 | 1.23370055013616982735431137498451889 |
1,25992 10498 94873 16476 Mw 150 | Raíz cúbica de dos, constante Delian | | | | 2^(1/3) | A | A002580 | [1;3,1,5,1,1,4,1,1,8,1,14,1,10,2,1,4,12,2,3,...] | | 1.25992104989487316476721060727822835 |
9,86960 44010 89358 61883 | Pi al Cuadrado |
| | | 6 Sum[n=1 to ∞] {1/n^2} | T | A002388 | [9;1,6,1,2,47,1,8,1,1,2,2,1,1,8,3,1,10,5,...] | | 9.86960440108935861883449099987615114 |
1,41421 35623 73095 04880 Mw 151 | Raíz cuadrada de 2, constante dePitágoras 185 | | | | prod[n=1 to ∞] {1+(-1)^(n+1) /(2n-1)} | A | A002193 | [1;2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,...] = [1;2...] | < -800 | 1.41421356237309504880168872420969808 |
262 53741 26407 68743 ,99999 99999 99250 073 Mw 152 | Constante de Hermite-Ramanujan 186 | | | | e^(π sqrt(163)) | T | A060295 | [262537412640768743;1,1333462407511,1,8,1,1,5,...] | 1859 | 262537412640768743.999999999999250073 |
0,76159 41559 55764 88811 Mw 153 | Tangente hiperbólicade 1 187 | | | | (e-1/e)/(e+1/e) | T | A073744 | [0;1,3,5,7,9,11,13,15,17,19,21,23,25,27,...] = [0;2p+1], p∈ℕ | | 0.76159415595576488811945828260479359 |
0,36787 94411 71442 32159 Mw 154 | Inverso del Número e188 |
| | | sum[n=2 to ∞] {(-1)^n/n!} | T | A068985 | [0;2,1,1,2,1,1,4,1,1,6,1,1,8,1,1,10,1,1,12,...] = [0;2,1,1,2p,1], p∈ℕ | 1618 | 0.36787944117144232159552377016146086 |
1,53960 07178 39002 03869 Mw 155 | Constante Square Ice de Lieb 189 | | | | (4/3)^(3/2) | A | A118273 | [1;1,1,5,1,4,2,1,6,1,6,1,2,4,1,5,1,1,2,...] | 1967 | 1.53960071783900203869106341467188655 |
7,38905 60989 30650 22723 | Constante cónica de Schwarzschild 190 |
| | | Sum[n=0 to ∞] {2^n/n!} | T | A072334 | [7;2,1,1,3,18,5,1,1,6,30,8,1,1,9,42,11,1,...] = [7,2,1,1,n,4*n+6,n+2], n = 3, 6, 9, etc. | | 7.38905609893065022723042746057500781 |
1,44466 78610 09766 13365 Mw 156 | Número de Steiner 191 |
| |
Límite superior de Tetración
| e^(1/e) | | A073229 | [1;2,4,55,27,1,1,16,9,3,2,8,3,2,1,1,4,1,9,...] | 1796 a 1863 | 1.44466786100976613365833910859643022 |
4,53236 01418 27193 80962 | Constante de van der Pauw | | | | π/ln(2) | | A163973 | [4;1,1,7,4,2,3,3,1,4,1,1,4,7,2,3,3,12,2,1,...] | | 4.53236014182719380962768294571666681 |
1,57079 63267 94896 61923 Mw 157 | Constante de Favard K1 Producto de Wallis 192 | | | | Prod[n=1 to ∞] {(4n^2)/(4n^2-1)} | | A019669 | [1;1,1,3,31,1,145,1,4,2,8,1,6,1,2,3,1,4,1,5,1...] | 1655 | 1.57079632679489661923132169163975144 |
1,61803 39887 49894 84820 Mw 158 | Fi, Número áureo 193 ·194 | | | | (1+5^(1/2))/2 | A | A001622 | [0;1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,...] = [0;1,...] | -300 ~ | 1.61803398874989484820458633436563812 |
1,64493 40668 48226 43647 Mw 159 | Función Zeta (2) de Riemann | | | | Sum[n=1 to ∞] {1/n^2} | T | A013661 | [1;1,1,1,4,2,4,7,1,4,2,3,4,10 1,2,1,1,1,15,...] | 1826 a 1866 | 1.64493406684822643647241516664602519 |
1,73205 08075 68877 29352 Mw 160 | Constante de Theodorus195 | | | | (3(3(3(3(3(3(3) ^1/3)^1/3)^1/3) ^1/3)^1/3)^1/3) ^1/3 ... | A | A002194 | [1;1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,...] = [1;1,2,...] | -465 a -398 | 1.73205080756887729352744634150587237 |
1,75793 27566 18004 53270 Mw 161 | Número de Kasner 196 | | | | | | A072449 | [1;1,3,7,1,1,1,2,3,1,4,1,1,2,1,2,20,1,2,2,...] | 1878 a 1955 | 1.75793275661800453270881963821813852 |
2,29558 71493 92638 07403 Mw 162 | Constante universal parabólica 197 | | | | ln(1+sqrt 2)+sqrt 2 | T | A103710 | [2;3,2,1,1,1,1,3,3,1,1,4,2,3,2,7,1,6,1,8,7,2,1,...] | | 2.29558714939263807403429804918949038 |
3,30277 56377 31994 64655 Mw 163 | Número de bronce 198 |
| | | (3+sqrt 13)/2 | A | A098316 | [3;3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,...] = [3;3,...] | | 3.30277563773199464655961063373524797 |
2,37313 82208 31250 90564 | Constante de Lévy 2199 |
| | | Pi^(2)/(6*ln(2)) | T | A174606 | [2;2,1,2,8,57,9,32,1,1,2,1,2,1,2,1,2,1,3,2,...] | 1936 | 2.37313822083125090564344595189447424 |
2,50662 82746 31000 50241 | Raíz cuadrada de 2 pi | | | Fórmula de Stirling | sqrt (2*pi) | T | A019727 | [2;1,1,37,4,1,1,1,1,9,1,1,2,8,6,1,2,2,1,3,...] | 1692 a 1770 | 2.50662827463100050241576528481104525 |
2,66514 41426 90225 18865 Mw 164 | Constante de Gelfond-Schneider 200 | | | | 2^sqrt{2} | T | A007507 | [2;1,1,1,72,3,4,1,3,2,1,1,1,14,1,2,1,1,3,1,...] | 1934 | 2.66514414269022518865029724987313985 |
2,68545 20010 65306 44530 Mw 165 | Constante de Khinchin201 | | | ... donde ak son elementos de la fracción continua [a0; a1, a2, a3, ...] | prod[n=1 to ∞] {(1+1/(n(n+2))) ^((ln(n)/ln(2))} | T | A002210 | [2;1,2,5,1,1,2,1,1,3,10,2,1,3,2,24,1,3,2,...] | 1934 | 2.68545200106530644530971483548179569 |
3,27582 29187 21811 15978 Mw 166 | Constante de Khinchin-Lévy 202 · 203 | | | | e^(\pi^2/(12 ln(2)) | | A086702 | [3;3,1,1,1,2,29,1,130,1,12,3,8,2,4,1,3,55,...] | 1936 | 3.27582291872181115978768188245384386 |
3,35988 56662 43177 55317 Mw 167 | Constante de Prévost, sum. inversos deFibonacci 204 | | | | | I | A079586 | [3;2,1,3,1,1,13,2,3,3,2,1,1,6,3,2,4,362,...] | 1977 | 3.35988566624317755317201130291892717 |
1,32471 79572 44746 02596 Mw 168 | Número plástico 205 | | | | | A | A060006 | [1;3,12,1,1,3,2,3,2,4,2,141,80,2,5,1,2,8,...] | 1929 | 1.32471795724474602596090885447809734 |
4,13273 13541 22492 93846 | Raíz de 2 e pi |
| | | sqrt(2e pi) | | A019633 | [4;7,1,1,6,1,5,1,1,1,8,3,1,2,2,15,2,1,1,2,4,...] | | 4.13273135412249293846939188429985264 |
2,66514 41426 90225 18865 Mw 169 | Constante de Gelfond206 | | | | Sum[n=0 to ∞] {(pi^n)/n!} | T | A039661 | [23;7,9,3,1,1,591,2,9,1,2,34,1,16,1,30,1,...] | 1906 a 1968 | 23.1406926327792690057290863679485474 |
Tabla de constantes matemáticas[editar]
Abreviaciones usadas:
0 | 0 | cero | R | - | - |
1 | 1 | uno | R | - | - |
2 | 2 | dos | R | - | - |
0 | 1- ∞(e^ipi2n÷x^½)= 0 | se cumple ∀ n ≥1 y ∀ x ≥1. ∞ indica la tetración infinita de la forma encerrada | R | - | 2013 |
| 3,14159 26535 89793 23846 26433 83279 50288 41971 | Pi, constante deArquímedeso número deLudolph | T | 10.000.000.000.050207 | 22/10/2011 |
| 2,71828 18284 59045 23536 02874 71352 66249 77572 | Constante de Napier, base dellogaritmo natural | T | 1.000.000.000.000208209 | 2010 |
| 1,41421 35623 73095 04880 16887 24209 69807 85696 | Raíz cuadrada de dos, constante dePitágoras. | I | 1.000.000.000.000209 | 2010 |
| 1,73205 08075 68877 29352 74463 41505 87236 69428 | Raíz cuadrada de tres | I | 10.000.000 | |
| 2,23606 79774 99789 69640 91736 68731 27623 54406 | Raíz cuadrada de cinco | I | 10.000.000210 | 20/12/1999 |
| 1,61803 39887 49894 84820 45868 34365 63811 77203 | Número áureo, simbolizado tanto como φ como por τ. | I | 1.000.000.000.000209 | 2010 |
| 0,57721 56649 01532 86060 65120 90082 40243 10421 | Constante de Euler-Mascheroni | ? | 29.844.489.545209 | 2009 |
| -2,50290 78750 95892 82228 39028 73218 21578 63812 | Constante α de Feigenbaum | | 1018211 | 1999 |
| 4,66920 16091 02990 67185 32038 20466 20161 72581 | Constante δ de Feigenbaum | | 1018211 | 1999 |
| 0,37395 58136 19202 28805 47280 54346 41641 51116 | Constante de Artin | | 1000209 | 1999 |
| 0,66016 18158 46869 57392 78121 10014 55577 84326 | Constante de los primos gemelos | | 5.020209 | 2001 |
| 1,90216 0582 | Constante de Brunpara los primos gemelos | | 9209 | 1999 / 2002
|
No hay comentarios:
Publicar un comentario