Algoritmos de precisión arbitraria
Constantes y funciones matemáticas
La estructura de la tabla es la siguiente:
- Valor numérico de la constante y enlace a MathWorld o a OEIS Wiki.
- LaTeX: Fórmula o serie en el formato TeX.
- Fórmula: Para utilizar en Wolfram Alpha. Si en los cálculos, ∞ demora mucho tiempo, puede cambiarse por 20000, para obtener un resultado aproximado.
- OEIS: On-Line Encyclopedia of Integer Sequences.
- Fracción continua: En el formato simple [Parte entera; frac1, frac2, frac3, ...] , suprarrayada si es periódica.
- Año: Del descubrimiento de la constante, o datos del autor.
- Formato web: Valor de la constante, en formato adecuado para los buscadores web.
- N.º: Tipo de Número
- R - Racional
- I - Irracional
- A - Algebraico
- T - Trascendental
- C - Complejo
- (La tabla se puede ordenar ascendente o descendente, por cualquiera de los campos, sin más que pulsar en los títulos del encabezado).
Valor | Nombre | Gráfico | Símbolo | LaTeX | Fórmula | N.º | OEIS | Fracción continua | Año | Formato web |
---|---|---|---|---|---|---|---|---|---|---|
0,07077 60393 11528 80353
-0,68400 03894 37932 129 i Ow 1
| Constante MKB 1 · 2 · 3 | ![]() | ![]() | lim_(2n->∞) int[1 to 2n] {exp(i*Pi*x)*x^(1/x) dx} | C | A255727 A255728 | [0;14,7,1,2,1,23,2,1,8,16,1,1,3,1,26,1,6,1,1, ...] - [0;1,2,6,13,41,112,1,25,1,1,1,1,3,13,2,1, ...] i | 2009 | 0.07077603931152880353952802183028200 -0.68400038943793212918274445999266 i | |
3,05940 74053 42576 14453 Mw 1Ow 2 | Constante Doble factorial | ![]() | ![]() | Sum[n=0 to ∞]{1/n!!} | A143280 | [3;16,1,4,1,66,10,1,1,1,1,2,5,1,2,1,1,1,1,1,2,...] | 3.05940740534257614453947549923327861 | |||
0,62481 05338 43826 58687 + 1,30024 25902 20120 419 i | Fracción continua generalizada de i | ![]() | ![]() | i+i/(i+i/(i+i/(i+i/(i+i/(i+i/(i+i/( i+i/(i+i/(i+i/(i+i/(i+i/(i+i/(i+i/( i+i/(i+i/(i+i/(i+i/(i+i/(i+i/(i+i/( ...))))))))))))))))))))) | C A | A156590 A156548 | [i;1,i,1,i,1,i,1,i,1,i,1,i,1,i,1,i,1,i,1,i,1,i,1,i,1,i,1,i,1,..] = [0;1,i] | 0.62481053384382658687960444744285144 + 1.30024259022012041915890982074952 i | ||
0,91893 85332 04672 74178 Mw 2 | Fórmula de Raabe 4 | ![]() | ![]() | integral_a^(a+1) {log(Gamma(x))+a-a log(a)} dx | A075700 | [0;1,11,2,1,36,1,1,3,3,5,3,1,18,2,1,1,2,2,1,1,...] | 0.91893853320467274178032973640561763 | |||
0,42215 77331 15826 62702 Mw 3 | Volumen delTetraedro de Reuleaux 5 | ![]() | ![]() | ![]() | (3*Sqrt[2] - 49*Pi + 162*ArcTan[Sqrt[2]])/12 | A102888 | [0;2,2,1,2,2,7,4,4,287,1,6,1,2,1,8,5,1,1,1,1, ...] | 0.42215773311582662702336591662385075 | ||
1,17628 08182 59917 50654 Mw 4 | Constante de Salem,conjetura de Lehmer 6 | ![]() | ![]() | x^10+x^9-x^7-x^6-x^5-x^4-x^3+x+1 | A | A073011 | [1;5,1,2,17,1,7,2,1,1,2,4,7,2,2,1,1,15,1,1, ... | 1983? | 1.17628081825991750654407033847403505 | |
2,39996 32297 28653 32223 Mw 5 | Ángulo áureo 7 | ![]() ![]() | ![]() | ![]() | (4-2*Phi)*Pi | T | A131988 | [2;2,1,1,1087,4,4,120,2,1,1,2,1,1,7,7,2,11,...] | 1907 | 2.39996322972865332223155550663361385 |
1,26408 47353 05301 11307 Mw 6 | Constante de Vardi 8 | ![]() | ![]() | A076393 | [1;3,1,3,1,2,5,54,7,1,2,1,2,3,15,1,2,1,1,2,1,...] | 1991 | 1.26408473530530111307959958416466949 | |||
1,5065918849 ± 0,0000000028Mw 7 | Área del fractal de Mandelbrot 9 | ![]() | ![]() | Se conjetura que el valor exacto es: ![]() | A098403 | [1;1,1,37,2,2,1,10,1,1,2,2,4,1,1,1,1,5,4,...] | 1912 | 1.50659177 +/- 0.00000008 | ||
1,61111 49258 08376 736 111···111 27224 36828 Mw 8 183213 unos | Constante Factorial exponencial | ![]() | ![]() | T | A080219 | [1; 1, 1, 1, 1, 2, 1, 808, 2, 1, 2, 1, 14,...] | 1.61111492580837673611111111111111111 | |||
0,31813 15052 04764 13531
±1,33723 57014 30689 40 i Ow 3
| Punto fijo Super-logaritmo 10 · 11 | ![]() | ![]() | ![]() ![]()
Para un valor inicial de x distinto a 0, 1, e, e^e, e^(e^e), etc.
| -W(-1) Donde W=ProductLog Lambert W function | C | A059526 A059527 | [-i;1 +2i,1+i,6-i,1+2i,-7+3i,2i,2,1-2i,-1+i,-, ...] | 0.31813150520476413531265425158766451 -1.33723570143068940890116214319371 i | |
1,09317 04591 95490 89396 Mw 9 | Constante de Smarandache 1ª 12 | ![]() | ![]()
μ(n) es el número más pequeño por el que μ(n)! es divisible por n
| A048799 | [1;10,1,2,1,2,1,13,3,1,6,1,2,11,4,6,2,15,1,1,...] | 1.09317045919549089396820137014520832 | ||||
1,64218 84352 22121 13687 Mw 10 | Constante de Lebesgue L2 13 | ![]() | ![]() | 1/5 + sqrt(25 - 2*sqrt(5))/Pi | T | A226655 | [1;1,1,1,3,1,6,1,5,2,2,3,1,2,7,1,3,5,2,2,1,1,...] | 1910 | 1.64218843522212113687362798892294034 | |
0,82699 33431 32688 07426 Mw 11 | Disk Covering 14 | ![]() | ![]() | ![]() | 3 Sqrt[3]/(2 Pi) | T | A086089 | [0;1,4,1,3,1,1,4,1,2,2,1,1,7,1,4,4,2,1,1,1,1,...] | 1939 1949 | 0.82699334313268807426698974746945416 |
1,78723 16501 82965 93301 Mw 12 | Constante de Komornik–Loreti 15 | ![]() | ![]()
t k = Sucesión de Thue-Morse
| FindRoot[(prod[n=0 to ∞] {1-1/(x^2^n)}+ (x-2)/(x-1))= 0, {x, 1.7}, WorkingPrecision->30] | T | A055060 | [1;1,3,1,2,3,188,1,12,1,1,22,33,1,10,1,1,7,...] | 1998 | 1.78723165018296593301327489033700839 | |
0,59017 02995 08048 11302 Mw 13 | Constante de Chebyshev 16 · 17 | ![]() | ![]() | (Gamma(1/4)^2) /(4 pi^(3/2)) | A249205 | [0;1,1,2,3,1,2,41,1,6,5,124,5,2,2,1,1,6,1,2,...] | 0.59017029950804811302266897027924429 | |||
0,52382 25713 89864 40645 Mw 14 | Función Chi Coseno hiperbólico integral | ![]() | ![]() | ![]() ![]() | Chi(x) | A133746 | [0;1,1,9,1,172,1,7,1,11,1,1,2,1,8,1,1,1,1,1,...] | 0.52382257138986440645095829438325566 | ||
0,62432 99885 43550 87099 Mw 15 | Constante de Golomb–Dickman18 | ![]() | ![]() | N[Int{n,0,1}[e^Li(n)],34] | A084945 | [0;1,1,1,1,1,22,1,2,3,1,1,11,1,1,2,22,2,6,1,...] | 1930 y 1964 | 0.62432998854355087099293638310083724 | ||
0,98770 03907 36053 46013 Mw 16 | Área delimitada por la rotación excéntrica del Triángulo de Reuleaux19 | ![]() | ![]() | ![]() | 2 sqrt(3)+pi/6-3 | T | A066666 | [0;1,80,3,3,2,1,1,1,4,2,2,1,1,1,8,1,2,10,1,2,...] | 1914 | 0.98770039073605346013199991355832854 |
0,70444 22009 99165 59273 | Constante Carefree220 | ![]() | ![]() | N[prod[n=1 to ∞] {1 - 1/(prime(n)* (prime(n)+1))}] | A065463 | [0;1,2,2,1,1,1,1,4,2,1,1,3,703,2,1,1,1,3,5,1,...] | 0.70444220099916559273660335032663721 | |||
1,84775 90650 22573 51225 Mw 17 | Constante camino auto-evitante en red hexagonal 21 · 22 | ![]() | ![]() | ![]()
La menor raíz real de
![]() | sqrt(2+sqrt(2)) | A | A179260 | [1;1,5,1,1,3,6,1,3,3,10,10,1,1,1,5,2,3,1,1,3,...] | 1.84775906502257351225636637879357657 | |
0,19452 80494 65325 11361 Mw 18 | 2ª Constante Du Bois Reymond 23 | ![]() | ![]() | (e^2-7)/2 | T | A062546 | [0;5,7,9,11,13,15,17,19,21,23,25,27,29,31,...] = [0;2p+3], p∈ℕ | 0.19452804946532511361521373028750390 | ||
2,59807 62113 53315 94029 Mw 19 | Área de un hexágono de lado unitario 24 | ![]() | ![]() | ![]() | 3 sqrt(3)/2 | A | A104956 | [2;1,1,2,20,2,1,1,4,1,1,2,20,2,1,1,4,1,1,2,20,...] [2;1,1,2,20,2,1,1,4] | 2.59807621135331594029116951225880855 | |
1,78657 64593 65922 46345 Mw 20 | Constante de Silverman 25 | ![]() | ![]() | Sum[n=1 to ∞] {1/[EulerPhi(n) DivisorSigma(1,n)]} | A093827 | [1;1,3,1,2,5,1,65,11,2,1,2,13,1,4,1,1,1,2,5,4,...] | 1.78657645936592246345859047554131575 | |||
1,46099 84862 06318 35815 Mw 21 | Constante cuatro-colores de Baxter 26 | Mapamundi ![]() | ![]() | ![]() | 3×Gamma(1/3) ^3/(4 pi^2) | A224273 | [1;2,5,1,10,8,1,12,3,1,5,3,5,8,2,1,23,1,2,161,...] | 1970 | 1.46099848620631835815887311784605969 | |
0,66131 70494 69622 33528 Mw 22 | Constante de Feller-Tornier 27 | ![]() | ![]() | [prod[n=1 to ∞] {1-2/prime(n)^2}] /2 + 1/2 | T ? | A065493 | [0;1,1,1,20,9,1,2,5,1,2,3,2,3,38,8,1,16,2,2,...] | 1932 | 0.66131704946962233528976584627411853 | |
1,92756 19754 82925 30426 Mw 23 | Constante Tetranacci | ![]() | La mayor raíz real de ![]() | Root[x+x^-4-2=0] | A | A086088 | [1;1,12,1,4,7,1,21,1,2,1,4,6,1,10,1,2,2,1,7,1,...] | 1.92756197548292530426190586173662216 | ||
1,00743 47568 84279 37609 Mw 24 | Constante DeVicci'sTeseracto | ![]() | ![]() | Arista del mayor cubo, dentro de un hipercubo unitario 4D.
La menor raíz real de
![]() | Root[4*x^8-28*x^6 -7*x^4+16*x^2+16 =0] | A | A243309 | [1;134,1,1,73,3,1,5,2,1,6,3,11,4,1,5,5,1,1,48,...] | 1.00743475688427937609825359523109914 | |
0,15915 49430 91895 33576 Mw 25 | Constante A de Plouffe 28 | ![]() | ![]() | 1/(2 pi) | T | A086201 | [0;6,3,1,1,7,2,146,3,6,1,1,2,7,5,5,1,4,1,2,42,...] | 0.15915494309189533576888376337251436 | ||
0,41245 40336 40107 59778 Mw 26 | Constante de Thue-Morse 29 | ![]() | ![]() | ![]() ![]()
donde
![]() | T | A014571 | [0;2,2,2,1,4,3,5,2,1,4,2,1,5,44,1,4,1,2,4,1,1,...] | 0.41245403364010759778336136825845528 | ||
0,58057 75582 04892 40229 Mw 27 | Constante de Pell30 | ![]() | ![]() | N[1-prod[n=0 to ∞] {1-1/(2^(2n+1)}] | T ? | A141848 | [0;1,1,2,1,1,1,1,14,1,3,1,1,6,9,18,7,1,27,1,1,...] | 0.58057755820489240229004389229702574 | ||
2,20741 60991 62477 96230 Mw 28 | Problema moviendo el sofá de Hammersley31 | ![]() | ![]() | ![]() | pi/2 + 2/pi | T | A086118 | [2;4,1,4,1,1,2,5,1,11,1,1,5,1,6,1,3,1,1,1,1,7,...] | 1967 | 2.20741609916247796230685674512980889 |
1,15470 05383 79251 52901 Mw 29 | Constante de Hermite32 | ![]() | ![]() | 2/sqrt(3) | A | 1+ A246724 | [1;6,2,6,2,6,2,6,2,6,2,6,2,6,2,6,2,6,2,6,2,6,2,...] [1;6,2] | 1.15470053837925152901829756100391491 | ||
0,63092 97535 71457 43709 Mw 30 | Dimensión fractal del Conjunto de Cantor 33 | ![]() | ![]() | ![]() | log(2)/log(3) N[3^x=2] | T | A102525 | [0;1,1,1,2,2,3,1,5,2,23,2,2,1,1,55,1,4,3,1,1,...] | 0.63092975357145743709952711434276085 | |
0,17150 04931 41536 06586 Mw 31 | Constante Hall-Montgomery 34 | ![]() | ![]() | 1 + Pi^2/6 + 2*PolyLog[2, -Sqrt[E]] | A143301 | [0;5,1,4,1,10,1,1,11,18,1,2,19,14,1,51,1,2,1,...] | 0.17150049314153606586043997155521210 | |||
1,55138 75245 48320 39226 Mw 32 | Constante Triángulo Calabi 35 | ![]() | ![]() | ![]() | FindRoot[ 2x^3-2x^2-3x+2 ==0, {x, 1.5}, WorkingPrecision->40] | A | A046095 | [1;1,1,4,2,1,2,1,5,2,1,3,1,1,390,1,1,2,11,6,2,...] | 1946 ~ | 1.55138752454832039226195251026462381 |
0,97027 01143 92033 92574 Mw 33 | Constante de Lochs 36 | ![]() | ![]() | 6*ln(2)*ln(10)/Pi^2 | A086819 | [0;1,32,1,1,1,2,1,46,7,2,7,10,8,1,71,1,37,1,1,...] | 1964 | 0.97027011439203392574025601921001083 | ||
1,30568 67 ≈ Mw 34 | Dimensión fractal del círculo de Apolonio 37 | ![]() | ![]() | A052483 | [0;3,2,3,16,8,10,3,1,1,2,1,3,1,2,13,1,1,4,1,5,...] | 1.3056867 ≈ | ||||
0,00131 76411 54853 17810 Mw 35 | Constante de Heath-Brown–Moroz38 | ![]() | ![]() | N[prod[n=1 to ∞] {((1-1/prime(n))^7) *(1+(7*prime(n)+1) /(prime(n)^2))}] | T ? | A118228 | [0;758,1,13,1,2,3,56,8,1,1,1,1,1,143,1,1,1,2,...] | 0.00131764115485317810981735232251358 | ||
0,14758 36176 50433 27417 Mw 36 | Constante gamma de Plouffe 39 | ![]() | ![]() | ![]() ![]() | Arctan(1/2)/Pi | T | A086203 | [0;6,1,3,2,5,1,6,5,3,1,1,2,1,1,2,3,1,2,3,2,2,...] | 0.14758361765043327417540107622474052 | |
0,70523 01717 91800 96514 Mw 37 | Constante Primorial Suma de productos de inverso de primos 40 | ![]() | ![]() | Sum[k=1 to ∞](prod[n=1 to k]{1/prime(n)}) | I | A064648 | [0;1,2,2,1,1,4,1,2,1,1,6,13,1,4,1,16,6,1,1,4,...] | 0.70523017179180096514743168288824851 | ||
0,29156 09040 30818 78013 Mw 38 | Constante dimer 2D, recubrimiento con dominós 41 · 42 | ![]() | ![]()
C=catalan
| ![]() | N[int[-pi to pi] {arccosh(sqrt( cos(t)+3)/sqrt(2)) /(4*Pi) /, dt}] | A143233 | [0;3,2,3,16,8,10,3,1,1,2,1,3,1,2,13,1,1,4,1,5,...] | 0.29156090403081878013838445646839491 | ||
0,72364 84022 98200 00940 Mw 39 | Constante de Sarnak | ![]() | ![]() | N[prod[k=2 to ∞] {1-(prime(k)+2) /(prime(k)^3)}] | T ? | A065476 | [0;1,2,1,1,1,1,1,1,1,4,4,1,1,1,1,1,1,1,8,2,1,1,...] | 0.72364840229820000940884914980912759 | ||
0,63212 05588 28557 67840 Mw 40 | Constante de tiempo43 | ![]() | ![]() | ![]() ![]() | lim_(n->∞) (1- !n/n!) !n=subfactorial | T | A068996 | [0;1,1,1,2,1,1,4,1,1,6,1,1,8,1,1,10,1,1,12,1,...] = [0;1,1,1,2n], n∈ℕ | 0.63212055882855767840447622983853913 | |
0.30366 30028 98732 65859 Mw 41 | Constante de Gauss-Kuzmin-Wirsing44 | ![]() | ![]()
donde
![]() ![]() | A038517 | [0;3,3,2,2,3,13,1,174,1,1,1,2,2,2,1,1,1,2,2,1,...] | 1973 | 0.30366300289873265859744812190155623 | |||
1,30357 72690 34296 39125 Mw 42 | Constante de Conway45 | ![]() | ![]() | ![]() | A | A014715 | [1;3,3,2,2,54,5,2,1,16,1,30,1,1,1,2,2,1,14,1,...] | 1987 | 1.30357726903429639125709911215255189 | |
1,18656 91104 15625 45282 Mw 43 | Constante de Khinchin-Lévy 46 | ![]() | ![]() | pi^2 /(12 ln 2) | A100199 | [1;5,2,1,3,1,1,28,18,16,3,2,6,2,6,1,1,5,5,9,...] | 1935 | 1.18656911041562545282172297594723712 | ||
0,83564 88482 64721 05333 | Constante de Baker 47 | ![]() | ![]() | ![]() | Sum[n=0 to ∞] {((-1)^(n))/(3n+1)} | A113476 | [0;1,5,11,1,4,1,6,1,4,1,1,1,2,1,3,2,2,2,2,1,3,...] | 0.83564884826472105333710345970011076 | ||
23,10344 79094 20541 6160 Mw 44 | Serie de Kempner(0)48 | ![]() | ![]() ![]() | 1+1/2+1/3+1/4+1/5 +1/6+1/7+1/8+1/9 +1/11+1/12+1/13 +1/14+1/15+... | A082839 | [23;9,1,2,3244,1,1,5,1,2,2,8,3,1,1,6,1,84,1,...] | 23.1034479094205416160340540433255981 | |||
0,98943 12738 31146 95174 Mw 45 | Constante de Lebesgue 49 | ![]() | ![]() | ![]() | 4/pi^2*[(2 Sum[k=1 to ∞] {ln(k)/(4*k^2-1)}) -poligamma(1/2)] | A243277 | [0;1,93,1,1,1,1,1,1,1,7,1,12,2,15,1,2,7,2,1,5,...] | 0.98943127383114695174164880901886671 | ||
1,38135 64445 18497 79337 | Constante Beta Kneser-Mahler 50 | ![]() | ![]() | e^((PolyGamma(1,4/3) - PolyGamma(1,2/3) +9)/(4*sqrt(3)*Pi)) | A242710 | [1;2,1,1,1,1,1,4,1,139,2,1,3,5,16,2,1,1,7,2,1,...] | 1963 | 1.38135644451849779337146695685062412 | ||
1,18745 23511 26501 05459 Mw 46 | Constante de Foias α51 | ![]() | ![]()
La constante de Foias es el único número real tal que si x1 = α, entonces la secuencia diverge a ∞. Cuando x1 = α,
![]() | A085848 | [1;5,2,1,81,3,2,2,1,1,1,1,1,6,1,1,3,1,1,4,3,2,...] | 1970 | 1.18745235112650105459548015839651935 | |||
2,29316 62874 11861 03150 Mw 47 | Constante de Foias β | ![]() | ![]() | ![]() | x^(x+1) = (x+1)^x | A085846 | [2;3,2,2,3,4,2,3,2,130,1,1,1,1,1,6,3,2,1,15,1,...] | 2000 | 2.29316628741186103150802829125080586 | |
0,66170 71822 67176 23515 Mw 48 | Constante de Robbins52 | ![]() | ![]() | (4+17*2^(1/2)-6 *3^(1/2)+21*ln(1+ 2^(1/2))+42*ln(2+ 3^(1/2))-7*Pi)/105 | A073012 | [0;1,1,1,21,1,2,1,4,10,1,2,2,1,3,11,1,331,1,4,...] | 1978 | 0.66170718226717623515583113324841358 | ||
0,78853 05659 11508 96106 Mw 49 | Constante de Lüroth53 | ![]() | ![]() | ![]() | Sum[n=2 to ∞] log(n/(n-1))/n | A085361 | [0;1,3,1,2,1,2,4,1,127,1,2,2,1,3,8,1,1,2,1,16,...] | 0.78853056591150896106027632216944432 | ||
0,92883 58271 Mw 50 | Constante entre primos gemelos de JJGJJG 54 | ![]() | ![]() | 1/4 + 1/6 + 1/12 + 1/18 + 1/30 + 1/42 + 1/60 + 1/72 + ... | A241560 | [0; 1, 13, 19, 4, 2, 3, 1, 1] | 2014 | 0.928835827131 | ||
5,24411 51085 84239 62092 Mw 51 | Constante 2 Lemniscata 55 | ![]() | ![]() | ![]() | Gamma[ 1/4 ]^2 /Sqrt[ 2 Pi ] | A064853 | [5;4,10,2,1,2,3,29,4,1,2,1,2,1,2,1,4,9,1,4,1,2,...] | 1718 | 5.24411510858423962092967917978223883 | |
0,57595 99688 92945 43964 Mw 52 | Constante Stephens56 | ![]() | ![]() | Prod[n=1 to ∞] {1-prime(n) /(prime(n)^3-1)} | T ? | A065478 | [0;1,1,2,1,3,1,3,1,2,1,77,2,1,1,10,2,1,1,1,7,...] | ? | 0.57595996889294543964316337549249669 | |
0,73908 51332 15160 64165 Mw 53 | Número de Dottie 57 | ![]() | ![]() | ![]() | cos(c)=c | T | A003957 | [0;1,2,1,4,1,40,1,9,4,2,1,15,2,12,1,21,1,17,...] | 0.73908513321516064165531208767387340 | |
0,67823 44919 17391 97803 Mw 54 | Constante Taniguchi58 | ![]() | ![]() ![]() | Prod[n=1 to ∞] {1 -3/prime(n)^3 +2/prime(n)^4 +1/prime(n)^5 -1/prime(n)^6} | T ? | A175639 | [0;1,2,9,3,1,2,9,11,1,13,2,15,1,1,1,2,4,1,1,1,...] | ? | 0.67823449191739197803553827948289481 | |
1,35845 62741 82988 43520 Mw 55 | Constante espiral áureaWolfram Mathematica. Golden Spiral. |






[2;1,3]2.79128784747792000329402359686400424 1,85407 46773 01371 91843 Mw 56Constante Lemniscata de Gauss 59





{(1+1/n)^(1/n)}A242623[1;1,3,6,1,8,1,4,3,1,4,1,1,1,6,5,2,40,1,387,2,...]19771.75874362795118482469989684865589317 1,73245 47146 00633 47358 Ow 4Constante inversa de Euler-Mascheroni


(x=0 to 1)
{-log(log(1/x))}A098907[1;1,2,1,2,1,4,3,13,5,1,1,8,1,2,4,1,1,40,1,11,...]1.73245471460063347358302531586082968 1,94359 64368 20759 20505 Mw 57Constante
Euler Totient 61 62


/zeta(6)A082695[1;1,16,1,2,1,2,3,1,1,3,2,1,8,1,1,1,1,1,1,1,32,...]17501.94359643682075920505707036257476343 1,49534 87812 21220 54191Raíz cuarta de cinco63
![\sqrt[4]{5}](https://upload.wikimedia.org/math/d/3/5/d3588cd9eca9bb8f14872676cfccb02d.png)
![\sqrt[5]{5 \,\sqrt[5]{5 \, \sqrt[5]{5 \,\sqrt[5]{5 \,\sqrt[5]{5 \,\cdots}}}}}](https://upload.wikimedia.org/math/4/c/5/4c5e3b22d120db6aa2b6c4bf08868ab7.png)
^1/5)^1/5)^1/5)
^1/5)^1/5)^1/5)
^1/5 ...AA011003[1;2,53,4,96,2,1,6,2,2,2,6,1,4,1,49,17,2,3,2,...]1.49534878122122054191189899414091339 0,87228 40410 65627 97617 Mw 58Área Círculo de Ford64





{1/n^4}TA013662[1;12,6,1,3,1,4,183,1,1,2,1,3,1,1,5,4,2,7,...]1.08232323371113819151600369654116790 1,56155 28128 08830 27491Raíz Triangular de 2.66




[1;1,1,3]1.56155281280883027491070492798703851 1,45607 49485 82689 67139 Mw 60Constante de Backhouse 67



+ Sum[x^n Prime[n],
{n, 10000}], {x, {1}})A072508[1;2,5,5,4,1,1,18,1,1,1,1,1,2,13,3,1,2,4,16,4,...]19951.45607494858268967139959535111654355 1,43599 11241 76917 43235 Mw 61Constante interpolación de Lebesgue 68 · 69




![\prod_{n=1}^{\infty} \frac{n!}{\sqrt{2\pi n}\left(\frac{n}{e}\right)^n \sqrt[12]{1+\tfrac1{n}}}](https://upload.wikimedia.org/math/c/4/4/c4428bd44a136806f8bba3e3ba545eea.png)
n! /(sqrt(2*Pi*n)
*(n/e)^n *(1+1/n)
^(1/12))]A213080[1;21,1,1,2,1,1,4,2,1,5,7,2,1,20,1,1,1134,3,..]1867
1885
19351.04633506677050318098095065697776037 1,86002 50792 21190 30718Constante
espiral de
Theodorus 71



{1/(n^(3/2)
+n^(1/2))}A226317[1;1,6,6,1,15,11,5,1,1,1,1,5,3,3,3,2,1,1,2,19,...]-460
a
-3991.86002507922119030718069591571714332 0,80939 40205 40639 13071 Mw 62Constante de Alladi-Grinstead72


|sum[n=1 to ∞]
{1/(n k^(n+1))})-1}A085291[0;1,4,4,17,4,3,2,5,3,1,1,1,1,6,1,1,2,1,22,...]19770.80939402054063913071793188059409131 1,26185 95071 42914 87419 Mw 63Dimensión fractal delCopo de nieve de Koch 73




{1-((sqrt(5) -3)/2)^n}A062073[1;4,2,2,3,2,15,9,1,2,1,2,15,7,6,21,3,5,1,23,...]1.22674201072035324441763023045536165 0,85073 61882 01867 26036 Mw 65Constante de plegado de papel 75 ·76



{8^2^n/(2^2^
(n+2)-1)},37]A143347[0;1,5,1,2,3,21,1,4,107,7,5,2,1,2,1,1,2,1,6,...]?0.85073618820186726036779776053206660 6,58088 59910 17920 97085Constante de Froda 77


± 0,86602 54037 84438 64676 iRaíz cúbica de 1 78

![\sqrt[3]{1}](https://upload.wikimedia.org/math/a/1/d/a1d45f6358f35869226f97927d7d465a.png)

E^(2i pi/3) ,
E^(-2i pi/3)CAA010527- [0,5]
± [0;1,6,2,6,2,6,2,6,2,6,2,6,2,6,2,6,2,6,2,...] i
- [0,5]
± [0; 1, 6, 2] i- 0,5
± 0.8660254037844386467637231707529 i 1,11786 41511 89944 97314 Mw 66Constante de Goh-Schmutz 79


log(s+1)
/(E^s-1)}A143300[1;8,2,15,2,7,2,1,1,1,1,2,3,5,3,5,1,1,4,13,1,...]1.11786415118994497314040996202656544 1,11072 07345 39591 56175 Mw 67Razón entre un cuadrado y la circunferencia circunscrita 80



{(-1)^(floor((n-1)/2))
/(2n-1)}TA093954[1;9,31,1,1,17,2,3,3,2,3,1,1,2,2,1,4,9,1,3,...]1.11072073453959156175397024751517342 2,82641 99970 67591 57554 Mw 68Constante de Murata81


{1+1/(prime(n)
-1)^2}T ?A065485[2;1,4,1,3,5,2,2,2,4,3,2,1,3,2,1,1,1,8,2,2,28,...]2.82641999706759157554639174723695374 1,52362 70862 02492 10627 Mw 69Dimensión fractal de la frontera de la Curva del dragón 82


![{\frac{\log\left(\frac{1+\sqrt[3]{73-6\sqrt{87}}+\sqrt[3]{73+6\sqrt{87}}}{3}\right)}
{\log(2)}}](https://upload.wikimedia.org/math/e/a/b/eab85a9811b807841f3ee07b2b20202f.png)
sqrt(87))^1/3+ (73+6 sqrt(87))^1/3)
/3))/ log(2)))T[1;1,1,10,12,2,1,149,1,1,1,3,11,1,3,17,4,1,...]1.52362708620249210627768393595421662 1,30637 78838 63080 69046 Mw 70Constante de Mills 83






{log(1/(2 sin (n)))}A091518[2;33,2,6,2,1,2,2,5,1,1,7,1,1,1,113,1,4,5,1,...]2.02988321281930725004240510854904057 1,46707 80794 33975 47289 Mw 72Constante de Porter85





Integral
senoidal







a1...an son elementos de una fracción continua [a0;a1,a2,...,an]
(log 2)/(sum[n=1 to ∞]
{1/n log(1+
1/(n(n+2))}A087491[1;1,2,1,12,1,5,1,5,13,2,13,2,1,9,1,6,1,3,1,...]1.74540566240734686349459630968366106 0,10841 01512 23111 36151 Mw 76Constante de Trott

![\textstyle [1, 0, 8, 4, 1, 0, 1, 5, 1, 2, 2, 3, 1, 1, 1, 3, 6,...]](https://upload.wikimedia.org/math/1/6/0/1609612d4e686145ff3672c2198c1b7d.png)





a
18091.45136923488338105028396848589202744 0,64341 05462 88338 02618 Mw 78Constante de Cahen92





-\pi/2 -3 log 2A020777-[4;4,2,1,1,10,1,5,9,11,1,22,1,1,14,1,2,1,4,...]-4,2274535333762654080895301460966835 1,77245 38509 05516 02729 Mw 80Constante de Carlson-Levin94




{prime(n) /(n+(10^
sum[k=1 to n]{floor
(log_10 prime(k))}))}IA033308[0;4,4,8,16,18,5,1,1,1,1,7,1,1,6,2,9,58,1,3,...]0.23571113171923293137414347535961677 2,09455 14815 42326 59148 Mw 82Constante de Wallis96


![\sqrt[3]{\frac{45-\sqrt{1929}}{18}}+\sqrt[3]{\frac{45+\sqrt{1929}}{18}}](https://upload.wikimedia.org/math/9/2/e/92ea83d0662ef5f44e7999cefa82d592.png)
/18))^(1/3)+
(((45+sqrt(1929))
/18))^(1/3)AA007493[2;10,1,1,2,1,3,1,1,12,3,5,1,1,2,1,6,1,11,4,...]1616
a
17032.09455148154232659148238654057930296 0,28674 74284 34478 73410 Mw 83Constante Strongly Carefree97


{1 - (3*prime(k)-2)
/(prime(k)^3)}]A065473[0;3,2,19,3,12,1,5,1,5,1,5,2,1,1,1,1,1,3,7,...]0.28674742843447873410789271278983845 0,64624 54398 94813 30426 Mw 84Constante de Masser-Gramain 98




+ 2*Log[2]
+ 3*Log[Pi]
- 4 Log[Gamma[1/4]])A086057[0;1,1,1,4,1,3,2,3,9,1,33,1,4,3,3,5,3,1,3,4,...]0.64624543989481330426647339684579279 0,54325 89653 42976 70695 Mw 85Constante de Bloch-Landau 99


*gamma(5/6)
/gamma(1/6)A081760[0;1,1,5,3,1,1,2,1,1,6,3,1,8,11,2,1,1,27,4,...]19290.54325896534297670695272829530061323 0,34053 73295 50999 14282 Mw 86Constante de Pólya Random Walk100




/((Gamma[1/24]
*Gamma[5/24]
*Gamma[7/24]
*Gamma[11/24])A086230[0;2,1,14,1,3,8,1,5,2,7,1,12,1,5,59,1,1,1,3,...]0.34053732955099914282627318443290289 0,35323 63718 54995 98454 Mw 87Constante de Hafner-Sarnak-McCurley (1)101

![\prod_{k=1}^{\infty}\left\{1-\left[1-\prod_{j=1}^n(1-p_k^{-j})\right]^2\right\}](https://upload.wikimedia.org/math/4/b/c/4bc4867e4739c964c96e0c7f2554c3ad.png)






(1-1/prime(n)^2)TA059956[0;1,1,1,1,4,2,4,7,1,4,2,3,4,10,1,2,1,1,1,...]0.60792710185402662866327677925836583 0,12345 67891 01112 13141 Mw 90Constante de Champernowne104








{1/(2^(2n+1)(2n+1))})/
( Sum[n=0 to ∞]
{1/(3^(2n+1)(2n+1))})TA020857[1;1,1,2,2,3,1,5,2,23,2,2,1,1,55,1,4,3,1,1,...]1.58496250072115618145373894394781651 0,11000 10000 00000 00000 0001 Mw 93Número de Liouville107


{10^(-n!)}TA012245[1;9,1,999,10,9999999999999,1,9,999,1,9]0.11000100000000000000000100... 0,46364 76090 00806 11621Serie de Machin-Gregory108



{(-1)^n (1/2)
^(2n+1)/(2n+1)}IA073000[0;2,6,2,1,1,1,6,1,2,1,1,2,10,1,2,1,2,1,1,1,...]0.46364760900080611621425623146121440 1,27323 95447 35162 68615Serie de Ramanujan-Forsyth 109


{[(2n-3)!!
/(2n)!!]^2}IA088538[1;3,1,1,1,15,2,72,1,9,1,17,1,2,1,5,1,1,10,...]1.27323954473516268615107010698011489 15,15426 22414 79264 1897 Mw 94Constante exponencial reiterado110



{(e^n)/n!}A073226[15;6,2,13,1,3,6,2,1,1,5,1,1,1,9,4,1,1,1,6,7,...]15.1542622414792641897604302726299119 36,46215 96072 07911 77099Pi elevado a pi 111




[sum[n=1 to ∞]
{((-1)^(2n)
gamma_n)
/(2^n n!)}]2-
A059750[0;1,1,5,1,4,6,1,1,2,6,1,1,2,1,1,1,37,3,2,1,...]0.53964549119041318711050084748470198 2,58498 17595 79253 21706 Mw 95Constante de Sierpiński 113




EulerGamma
+4 Pi Log
[Gamma[3/4]]A062089[2;1,1,2,2,3,1,3,1,9,2,8,4,1,13,3,1,15,18,1,...]19072.58498175957925321706589358738317116 1,83928 67552 14161 13255Constante Tribonacci114

![\textstyle \frac{1+\sqrt[3]{19+3\sqrt{33}}+\sqrt[3]{19-3\sqrt{33}}}{3} = \scriptstyle \, 1+ \left(\sqrt[3]{\tfrac12 + \sqrt[3]{\tfrac12 + \sqrt[3]{\tfrac12 + ...}}}\right)^{-1}](https://upload.wikimedia.org/math/0/7/0/0707b429626a5e063af3349ccb392ec6.png)
*sqrt(33))^(1/3)
+(19-3
*sqrt(33))^(1/3))AA058265[1;1,5,4,2,305,1,8,2,1,4,6,14,3,1,13,5,1,7,...]1.83928675521416113255185256465328660 0,69220 06275 55346 35386 Mw 96Valor mínimo de la función
ƒ(x) = xx 115


+0,70710 67811 86547 52440 i
Raíz cuadrada de i 116

![\sqrt[4]{-1} = \frac{1+i}{\sqrt{2}} = e^ \frac{i\pi}{4} =
\cos\left (\frac{\pi}{4} \right ) + i\sin\left ( \frac{\pi}{4} \right )](https://upload.wikimedia.org/math/4/f/2/4f23f753477adc58b0602352fdb3f711.png)
A010503[0;1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,..]
= [0;1,2,...]
[0;1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,..] i
= [0;1,2,...] i0.70710678118654752440084436210484903
+ 0.70710678118654752440084436210484 i 1,15636 26843 32269 71685 Mw 97Constante de recurrencia cúbica 117

![\prod_{n=1}^\infty n^{{3}^{-n}} = \sqrt[3] {1 \sqrt[3] {2 \sqrt[3]{3 \cdots}}} = 1^{1/3} \; 2^{1/9} \; 3^{1/27} \cdots](https://upload.wikimedia.org/math/7/5/7/757f408815d2f1869ab4e1cb636470ea.png)
{n ^(1/3)^n}A123852[1;6,2,1,1,8,13,1,3,2,2,6,2,1,2,1,1,1,10,33,...]1.15636268433226971685337032288736935 1,66168 79496 33594 12129 Mw 98Recurrencia cuadrática de Somos118


{n ^(1/2)^n}T ?A065481[1;1,1,1,21,1,1,1,6,4,2,1,1,2,1,3,1,13,13,...]1.66168794963359412129581892274995074 0,95531 66181 24509 27816Ángulo mágico119





{(e^-n)/(1+n)}]IA073003[0;1,1,2,10,1,1,4,2,2,13,2,4,1,32,4,8,1,1,1,...]0.59634736232319407434107849936927937 0,69777 46579 64007 98200 Mw 100Constante de fracción continua, función de Bessel 121


n/(n!n!)) /
(Sum {n=0 to ∞}
1/(n!n!))IA052119[0;1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,...]
= [0;p+1], p∈ℕ0.69777465796400798200679059255175260 0,36651 29205 81664 32701Mediana distribución de Gumbel 122





{(-n)^(n-1)/n!}TA030178[0;1,1,3,4,2,10,4,1,1,1,1,2,7,306,1,5,1,2,1,...]1728
a
17770.56714329040978387299996866221035555 0.69034 71261 14964 31946Límite superior exponencial iterado124



-7^-8^-9^-10^
-11^-12^-13 …A242760[0;1,2,4,2,1,3,1,2,2,1,4,1,2,4,3,1,1,10,1,3,2,...]0.69034712611496431946732843846418942 0,65836 55992Límite inferior exponencial iterado125


-7^-8^-9^-10^
-11^-12 …[0;1,1,1,12,1,2,1,1,4,3,1,1,2,1,2,1,51,2,2,1,...]0.6583655992... 2,71828 18284 59045 23536 Mw 102Número e, constante de Euler 126



![2\!\prod_{n=1}^{\infty}\!\!\textstyle\sqrt[2^n]{\frac{\prod_{i=1}^{2^{n-1}}(2^n+2i)}{\prod_{i=1}^{2^{n-1}}\!(2^n+2i-1)}} =2\sqrt{\frac{4}{3}}\sqrt[4]{\frac{6\cdot 8}{5\cdot 7}}\sqrt[8]{\frac{10\cdot 12\cdot 14\cdot 16}{9\cdot 11\cdot 13\cdot 15}}\cdots](https://upload.wikimedia.org/math/b/1/0/b10a81650be64379fed7828474e3114d.png)
{1/n!}TA001113[2;1,2,1,1,4,1,1,6,1,1,8,1,1,10,1,1,12,1,...]
= [2;1,2p,1], p∈ℕ16182.71828182845904523536028747135266250 2,74723 82749 32304 33305Raíces anidadas de Ramanujan R5 127


+sqrt(15
-6 sqrt(5)))/2A[2;1,2,1,21,1,7,2,1,1,2,1,2,1,17,4,4,1,1,4,2,...]2.74723827493230433305746518613420282 2,23606 79774 99789 69640Mw 103Raíz cuadrada de cinco
Suma de Gauss 128



{e^(2k^2 pi i/5)}AA002163[2;4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,...]
= [2;4,...]2.23606797749978969640917366873127624 1,09864 19643 94156 48573 Mw 104Constante París




A105415[1;10,7,3,1,3,1,5,1,4,2,7,1,2,3,22,1,2,5,2,1,...]1.09864196439415648573466891734359621 0,11494 20448 53296 20070 Mw 105Constante de Kepler–Bouwkamp 129



{cos(pi/n)}
A085365[0;8,1,2,2,1,272,2,1,41,6,1,3,1,1,26,4,1,1,...]0.11494204485329620070104015746959874 1,28242 71291 00622 63687 Mw 106Constante de Glaisher–Kinkelin 130





G-Barnes 132



{e^(1/n)}/{1 + 1/n}A073004[1;1,3,1,1,3,5,4,1,1,2,2,1,7,9,1,16,1,1,1,2,...]19001,78107241799019798523650410310717954 0,18785 96424 62067 12024 Mw 109MRB Constant, Marvin Ray Burns 133 134 135


![\sum_{n=1}^{\infty} ({-}1)^n (n^{1/n}{-}1) = - \sqrt[1]{1} + \sqrt[2]{2} - \sqrt[3]{3} + \sqrt[4]{4}\,...](https://upload.wikimedia.org/math/4/0/1/4018f2baa110c822e09b04260e609572.png)
{(-1)^n (n^(1/n)-1)}A037077[0;5,3,10,1,1,4,1,1,1,1,9,1,1,12,2,17,2,2,1,...]19990.18785964246206712024851793405427323 1,01494 16064 09653 62502 Mw 110Constante de Gieseking 136



-Sum[n=0 to ∞]
{1/((3n+2)^2)}
+Sum[n=1 to ∞]
{1/((3n+1)^2)})A143298[1;66,1,12,1,2,1,4,2,1,3,3,1,4,1,56,2,2,11,...]19121.01494160640965362502120255427452028 2,62205 75542 92119 81046 Mw 111Constante Lemniscata137



((1/4)!)^2TA062539[2;1,1,1,1,1,4,1,2,5,1,1,1,14,9,2,6,2,9,4,1,...]17982.62205755429211981046483958989111941 0,83462 68416 74073 18628 Mw 112Constante de Gauss138


((1/4)!)^2)
/pi^(3/2)TA014549[0;1,5,21,3,4,14,1,1,1,1,1,3,1,15,1,3,7,1,...]17990.83462684167407318628142973279904680 0,00787 49969 97812 3844 Mw 113Constante de Chaitin139



Ver también: Problema de la parada


{1/Gamma(x)}]A058655[2;1,4,4,1,18,5,1,3,4,1,5,3,6,1,1,1,5,1,1,1...]19782.80777024202851936522150118655777293 1,01734 30619 84449 13971 Mw 115Zeta(6) 141




{1/(1
-prime(n)^-6)}TA013664[1;57,1,1,1,15,1,6,3,61,1,5,3,1,6,1,3,3,6,1,...]1.01734306198444913971451792979092052 1,64872 12707 00128 14684 Ow 5Raíz cuadrada delnúmero e 142


{1/(2^n n!)}TA019774[1;1,1,1,5,1,1,9,1,1,13,1,1,17,1,1,21,1,1,...]
= [1;1,1,1,4p+1], p∈ℕ1.64872127070012814684865078781416357



à
1576

![\sqrt[i]{i} = i^{-i} = i^{\frac{1}{i}} = (i^i)^{-1} = e^{\frac{\pi}{2}}](https://upload.wikimedia.org/math/e/b/0/eb00c7e496807da5ca9bebd3511990b9.png)
0.15494 98283 01810 68512 i
Factorial de i145

A212878[0;6,2,4,1,8,1,46,2,2,3,5,1,10,7,5,1,7,2,...]
- [0;2,125,2,18,1,2,1,1,19,1,1,1,2,3,34,...] i0.49801566811835604271369111746219809
- 0.15494982830181068512495513048388 i 0,43828 29367 27032 11162
0,36059 24718 71385 485 i Mw 117
Tetración infinita de i146

A077590[0;2,3,1,1,4,2,2,1,10,2,1,3,1,8,2,1,2,1, ...]
+ [0;2,1,3,2,2,3,1,5,5,1,2,1,10,10,6,1,1...] i0.43828293672703211162697516355126482
+ 0.36059247187138548595294052690600 i 0,56755 51633 06957 82538Módulo de la
Tetración infinita dei147





Sum[n=1 to ∞]
{ln(1-1/prime(n))
+1/prime(n)}A077761[0;3,1,4,1,2,5,2,1,1,1,1,13,4,2,4,2,1,33,296,...]1866
y
18730.26149721284764278375542683860869585 1,92878 00... Mw 119Constante de Wright149









{1-1/(prime(n)
(prime(n)-1))}A005596[0;2,1,2,14,1,1,2,3,5,1,3,1,5,1,1,2,3,5,46,...]19990.37395581361920228805472805434641641 4,66920 16091 02990 67185 Mw 121Constante δ de Feigenbaum δ 151











{(-1)^(n+1)
/(-1+2n)^3}TA153071[0;1,31,4,1,18,21,1,1,2,1,2,1,3,6,3,28,1,...]0.96894614625936938048363484584691860 1,90216 05831 04 Mw 124Constante de Brun 2
= Σ inverso
primos gemelos 155



[1-1/(prime(n)
-1)^2]]A065421[1; 1, 9, 4, 1, 1, 8, 3, 4, 4, 2, 2]19191.90216058310 0,87058 83799 75 Mw 125Constante de Brun 4
= Σ inverso
primos gemelos 156







{(-1)^n 4/(2n+1)}TA000796[3;7,15,1,292,1,1,1,2,1,3,1,14,2,1,1,2,2,2,...]-250 ~3.14159265358979323846264338327950288 0,28878 80950 86602 42127 Mw 127Flajolet and Richmond160


{1-1/2^n}A048651[0;3,2,6,4,1,2,1,9,2,1,2,3,2,3,5,1,2,1,1,6,1,...]19920.28878809508660242127889972192923078 0,06598 80358 45312 53707 Mw 128Límite inferior deTetración 161







*Sum[n=0 to ∞]
{((4n)!/n!^4)*(1103+
26390n)/396^(4n)}TA049541[0;3,7,15,292,1,1,1,2,1,3,1,14,2,1,1,2,2,2,...]0.31830988618379067153776752674502872 0,63661 97723 67581 34307 Mw 131 Constante de Buffon164



a
16030.63661977236758134307553505349005745 0,47494 93799 87920 65033 Mw 132Constante deWeierstrass 165


/(4 2^(3/4) (1/4)!^2)A094692[0;2,9,2,11,1,6,1,4,6,3,19,9,217,1,2,4,8,6...]1872 ?0.47494937998792065033250463632798297 0,57721 56649 01532 86060 Mw 133Constante de Euler-Mascheroni166



|sum[k=0 to ∞]
{((-1)^k)/(2^n+k)}A001620[0;1,1,2,1,2,1,4,3,13,5,1,1,8,1,2,4,1,1,40,1,...]17350.57721566490153286060651209008240243 1,70521 11401 05367 76428 Mw 134Constante de Niven167


{1-(1/Zeta(n))}A033150[1;1,2,2,1,1,4,1,1,3,4,4,8,4,1,1,2,1,1,11,1,...]19691.70521114010536776428855145343450816 0,60459 97880 78072 61686 Mw 135Relación entre el área de un triángulo equilátero y su círculo inscrito.



Binomial[2 n, n])
, {n, 1, ∞}]TA073010[0;1,1,1,1,8,10,2,2,3,3,1,9,2,5,4,1,27,27,6,6,...]0.60459978807807261686469275254738524 3,24697 96037 17467 06105 Mw 136Constante Silver de Tutte–Beraha 168

![2+2 \cos \frac {2\pi} 7 = \textstyle 2+\frac{2+\sqrt[3]{7 + 7 \sqrt[3]{7 + 7 \sqrt[3]{\, 7 + \cdots}}}}{1+\sqrt[3]{7 + 7 \sqrt[3]{7 + 7 \sqrt[3]{\, 7 + \cdots}}}}](https://upload.wikimedia.org/math/1/b/2/1b2319784420d794cbbcd98b891c0eb0.png)


{(-1)^(n+1)/n}TA002162[0;1,2,3,1,6,3,1,1,2,1,1,1,1,3,10,1,1,1,2,1,1,...]1550
a
16170.69314718055994530941723212145817657 0,66016 18158 46869 57392 Mw 138Constante de los primos gemelos 169


{p(p-2)/(p-1)^2A005597[0;1,1,1,16,2,2,2,2,1,18,2,2,11,1,1,2,4,1,...]19220.66016181584686957392781211001455577 0,66274 34193 49181 58097 Mw 139Constante límite de Laplace170



/(sqrt(x^2+1)+1)
= 1A033259[0;1,1,1,27,1,1,1,8,2,154,2,4,1,5,1,1,2,1601,...]1782 ~0.66274341934918158097474209710925290 0,28016 94990 23869 13303 Mw 140Constante de Bernstein171





{-(-1)^n /n^n}A083648[0;1,3,1,1,1,1,1,1,2,4,7,2,1,2,1,1,1,2,1,14,...]16970.78343051071213440705926438652697546 1,29128 59970 62663 54040 Mw 142Sophomore's Dream 2Johann Bernoulli173



{1/(n^n)}A073009[1;3,2,3,4,3,1,2,1,1,6,7,2,5,3,1,2,1,8,1,2,4,...]16971.29128599706266354040728259059560054 0,82246 70334 24113 21823 Mw 143Constante Nielsen-Ramanujan174


{((-1)^(n+1))/n^2}TA072691[0;1,4,1,1,1,2,1,1,1,1,3,2,2,4,1,1,1,1,1,1,4...]19090.82246703342411321823620758332301259 0,78539 81633 97448 30961 Mw 144Beta(1) 175



{(-1)^n/(2n+1)}TA003881[0; 1,3,1,1,1,15,2,72,1,9,1,17,1,2,1,5,...]1805
a
18590.78539816339744830961566084581987572 0,91596 55941 77219 01505 Mw 145Constante de Catalan176 177 178


{(-1)^n/(2n+1)^2}T ?A006752[0;1,10,1,8,1,88,4,1,1,7,22,1,2,3,26,1,11,...]18640.91596559417721901505460351493238411 1,05946 30943 59295 26456 Ow 7Intervalo entre semitonos de laescala musical 179 180

![\sqrt[12]{2}](https://upload.wikimedia.org/math/7/0/b/70b8b8fc763c20423a65bd934e378085.png)





|a_n|^(1/n)T ?A078416[1;7,1,1,2,1,3,2,1,2,1,8,1,5,1,1,1,9,1,...]19971.1319882487943 ... 1,20205 69031 59594 28539 Mw 147Constante de Apéry182




{1/n^3}IA010774[1;4,1,18,1,1,1,4,1,9,9,2,1,1,1,2,7,1,1,7,11,...]19791.20205690315959428539973816151144999 1,22541 67024 65177 64512 Mw 148Gamma(3/4) 183




{1/((2n-1)^2)}TA111003[1;4,3,1,1,2,2,5,1,1,1,1,2,1,2,1,10,4,3,1,1,...]1902
a
19651.23370055013616982735431137498451889 1,25992 10498 94873 16476 Mw 150Raíz cúbica de dos, constante Delian

![\sqrt[3]{2}](https://upload.wikimedia.org/math/6/2/f/62f6a0ce6cf44d89c6f3b211c98c43bd.png)
![\sqrt[3]{2}](https://upload.wikimedia.org/math/6/2/f/62f6a0ce6cf44d89c6f3b211c98c43bd.png)


{1/n^2}TA002388[9;1,6,1,2,47,1,8,1,1,2,2,1,1,8,3,1,10,5,...]9.86960440108935861883449099987615114 1,41421 35623 73095 04880 Mw 151Raíz cuadrada de 2, constante dePitágoras 185



{1+(-1)^(n+1)
/(2n-1)}AA002193[1;2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,...]
= [1;2...]< -8001.41421356237309504880168872420969808 262 53741 26407 68743
,99999 99999 99250 073 Mw 152Constante de Hermite-Ramanujan 186





= [0;2p+1], p∈ℕ0.76159415595576488811945828260479359 0,36787 94411 71442 32159 Mw 154Inverso del Número e188


{(-1)^n/n!}TA068985[0;2,1,1,2,1,1,4,1,1,6,1,1,8,1,1,10,1,1,12,...]
= [0;2,1,1,2p,1], p∈ℕ16180.36787944117144232159552377016146086 1,53960 07178 39002 03869 Mw 155Constante Square Ice de Lieb 189





{2^n/n!}TA072334[7;2,1,1,3,18,5,1,1,6,30,8,1,1,9,42,11,1,...]
= [7,2,1,1,n,4*n+6,n+2], n = 3, 6, 9, etc.7.38905609893065022723042746057500781 1,44466 78610 09766 13365 Mw 156Número de Steiner 191

![\sqrt[e]{e}](https://upload.wikimedia.org/math/2/9/4/2947b01962d821fccb87efc04ad82256.png)

a
18631.44466786100976613365833910859643022 4,53236 01418 27193 80962Constante de van der Pauw


Producto de Wallis 192



{(4n^2)/(4n^2-1)}A019669[1;1,1,3,31,1,145,1,4,2,8,1,6,1,2,3,1,4,1,5,1...]16551.57079632679489661923132169163975144 1,61803 39887 49894 84820 Mw 158Fi, Número áureo 193 ·194



= [0;1,...]-300 ~1.61803398874989484820458633436563812 1,64493 40668 48226 43647 Mw 159Función Zeta (2) de Riemann


{1/n^2}TA013661[1;1,1,1,4,2,4,7,1,4,2,3,4,10 1,2,1,1,1,15,...]1826
a
18661.64493406684822643647241516664602519 1,73205 08075 68877 29352 Mw 160Constante de Theodorus195


![\sqrt[3]{3 \,\sqrt[3]{3 \, \sqrt[3]{3 \,\sqrt[3]{3 \,\sqrt[3]{3 \,\cdots}}}}}](https://upload.wikimedia.org/math/e/9/b/e9b71e9d16ee19d82d83df7370bfae7f.png)
^1/3)^1/3)^1/3)
^1/3)^1/3)^1/3)
^1/3 ...AA002194[1;1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,...]
= [1;1,2,...]-465
a
-3981.73205080756887729352744634150587237 1,75793 27566 18004 53270 Mw 161Número de Kasner 196


a
19551.75793275661800453270881963821813852 2,29558 71493 92638 07403 Mw 162Constante universal parabólica 197





= [3;3,...]3.30277563773199464655961063373524797 2,37313 82208 31250 90564Constante de Lévy 2199





a
17702.50662827463100050241576528481104525 2,66514 41426 90225 18865 Mw 164Constante de Gelfond-Schneider 200




![\prod_{n=1}^\infty \left[{1{+}{1\over n(n{+}2)}}\right]^\frac{\ln n}{\ln 2} = \lim_{n \to \infty } \left( \prod_{k=1}^n a_k \right) ^\frac{1}{n}](https://upload.wikimedia.org/math/6/b/c/6bc29783cfd60aaedc6de46b869e0459.png)
... donde ak son elementos de la fracción continua [a0; a1, a2, a3, ...]prod[n=1 to ∞]
{(1+1/(n(n+2)))
^((ln(n)/ln(2))}TA002210[2;1,2,5,1,1,2,1,1,3,10,2,1,3,2,24,1,3,2,...]19342.68545200106530644530971483548179569 3,27582 29187 21811 15978 Mw 166Constante de Khinchin-Lévy 202 · 203






![\sqrt[3]{1 + \sqrt[3]{1 + \sqrt[3]{1 + \sqrt[3]{1 + \cdots}}}}](https://upload.wikimedia.org/math/2/2/e/22ee6519967d628bf38066817f4618dc.png)




{(pi^n)/n!}TA039661[23;7,9,3,1,1,591,2,9,1,2,34,1,16,1,30,1,...]1906
a
196823.1406926327792690057290863679485474
Tabla de constantes matemáticas[editar]
Abreviaciones usadas:
- R - Número racional
- I - Número irracional algebraico
- T - número irracional trascendental
- ? - desconocido
0 | 0 | cero | R | - | - |
1 | 1 | uno | R | - | - |
2 | 2 | dos | R | - | - |
0 | 1- ∞(e^ipi2n÷x^½)= 0 | se cumple ∀ n ≥1 y ∀ x ≥1. ∞ indica la tetración infinita de la forma encerrada | R | - | 2013 |
![]() | 3,14159 26535 89793 23846 26433 83279 50288 41971 | Pi, constante deArquímedeso número deLudolph | T | 10.000.000.000.050207 | 22/10/2011 |
![]() | 2,71828 18284 59045 23536 02874 71352 66249 77572 | Constante de Napier, base dellogaritmo natural | T | 1.000.000.000.000208209 | 2010 |
![]() | 1,41421 35623 73095 04880 16887 24209 69807 85696 | Raíz cuadrada de dos, constante dePitágoras. | I | 1.000.000.000.000209 | 2010 |
![]() | 1,73205 08075 68877 29352 74463 41505 87236 69428 | Raíz cuadrada de tres | I | 10.000.000 | |
![]() | 2,23606 79774 99789 69640 91736 68731 27623 54406 | Raíz cuadrada de cinco | I | 10.000.000210 | 20/12/1999 |
![]() | 1,61803 39887 49894 84820 45868 34365 63811 77203 | Número áureo, simbolizado tanto como φ como por τ. | I | 1.000.000.000.000209 | 2010 |
![]() | 0,57721 56649 01532 86060 65120 90082 40243 10421 | Constante de Euler-Mascheroni | ? | 29.844.489.545209 | 2009 |
![]() | -2,50290 78750 95892 82228 39028 73218 21578 63812 | Constante α de Feigenbaum | 1018211 | 1999 | |
![]() | 4,66920 16091 02990 67185 32038 20466 20161 72581 | Constante δ de Feigenbaum | 1018211 | 1999 | |
![]() | 0,37395 58136 19202 28805 47280 54346 41641 51116 | Constante de Artin | 1000209 | 1999 | |
![]() | 0,66016 18158 46869 57392 78121 10014 55577 84326 | Constante de los primos gemelos | 5.020209 | 2001 | |
![]() | 1,90216 0582 | Constante de Brunpara los primos gemelos | 9209 | 1999 / 2002 |
No hay comentarios:
Publicar un comentario