Configuración electrónica
configuración electrónica indica la manera en la cual los electrones se estructuran o se modifican en un átomo de acuerdo con el modelo de capas electrónicas, en el cuál las funciones de ondas del sistema se expresa como un producto de orbitales antisimetrizadas.1 2 La configuración electrónica es importante porque determina las propiedades de combinación química de los átomos y por tanto su posición en la tabla periódica.
Introducción
La disposición de los electrones en los átomos está sujeta a las reglas de la mecánica cuántica. En particular la configuración electrónica viene dada por una combinación de estados cuánticos que son solución de la ecuación de Schrödinger para dicho átomo.
Una de las restricciones de la mecánica cuántica no explícitamente contenida en la ecuación de Schrödinger es que cualquier conjunto de electrones en un mismo estado cuántico deben cumplir el principio de exclusión de Pauli por ser fermiones (partículas de espín semientero). Dicho principio implica que la función de onda total que describe dicho conjunto de electrones debe ser antisimétrica.3 Por lo tanto, en el momento en que un estado cuántico es ocupado por un electrón, el siguiente electrón debe ocupar un estado cuántico diferente.
En los estados estacionarios de un átomo, la función de onda de un electrón en una aproximación no-relativista (los estados que son función propia de la ecuación de Schrödinger en donde es el hamiltoniano monoelectrónico correspondiente. Para el caso relativista hay que recurrir a la ecuación de Dirac. Las funciones propias obtenidas como solución de cualquiera de estas dos estaciones se denominan orbitales atómicos, por analogía con la imagen clásica de electrones orbitando alrededor del núcleo. Estos orbitales, en su expresión más básica, se pueden enumerar mediante cuatro números cuánticos: n, l, m y ms. Obviamente, el principio de exclusión de Pauli implica que no puede haber dos electrones en un mismo átomo con los cuatro valores de los números cuánticos iguales (porque entonces ocuparían el mismo orbital y eso está excluido por el principio).
De acuerdo con la mecánica cuántica, los electrones pueden pasar de un orbital atómico a otro ya sea emitiendo o absorbiendo un cuanto de energía, en forma de fotón. Esta transición de un orbital a otro con diferentes energías explican diversos fenómenos de emisión y absorción de radiación electromagnética por parte de los átomos.
Notación
Se utiliza en una notación estándar para describir las configuraciones electrónicas de átomos y moléculas. Para los átomos, la notación contiene la definición de los orbitales atómicos (en la forma n l, por ejemplo 1s, 2p, 3d, 4f) indicando el número de electrones asignado a cada orbital (o al conjunto de orbitales de la misma subcapa) como un superíndice. Por ejemplo, el hidrógeno tiene un electrón en el orbital s de la primera capa, de ahí que su configuración electrónica se escriba 1s1. Ellitio tiene dos electrones en la subcapa 1s y uno en la subcapa 2s (de mayor energía), de ahí que su configuración electrónica se escriba 1s2 2s1 (pronunciándose "uno-ese-dos, dos-ese-uno"). Para el fósforo (número atómico 15), tenemos: 1s2 2s2 2p6 3s2 3p3.
Para átomos con muchos electrones, esta notación puede ser muy larga por lo que se utiliza una notación abreviada, que tiene en cuenta que las primeras subcapas son iguales a las de algún gas noble. Por ejemplo, el fósforo, difiere del argón y neón (1s2 2s2 2p6) únicamente por la presencia de la tercera capa. Así, la configuración electrónica del fósforo se puede escribir respecto de la del neón como: [Ne] 3s2 3p3. Esta notación es útil si tenemos en cuenta que la mayor parte de las propiedades químicas de los elementos vienen determinadas por las capas más externas.
El orden en el que se escriben los orbitales viene dado por la estabilidad relativa de los orbitales, escribiéndose primero aquellos que tienen menor energía orbital. Esto significa que, aunque sigue unas pautas generales, se pueden producir excepciones. La mayor parte de los átomos siguen el orden dado por la regla de Madelung. Así, de acuerdo con esta regla, la configuración electrónica del hierro se escribe como: [Ar] 4s2 3d6. Otra posible notación agrupa primero los orbitales con el mismo número cuántico n, de tal manera que la configuración del hierro se expresa como [Ar] 3d6 4s2 (agrupando el orbital 3d con los 3s y 3p que están implícitos en la configuración del argón).
El superíndice 1 de los orbitales ocupados por un único electrón no es obligatorio.4 Es bastante común ver las letras de los orbitales escritas en letra itálica o cursiva. Sin embargo, la Unión Internacional de Química Pura y Aplicada (IUPAC) recomienda utilizar letra normal, tal y como se realiza aquí.
Origen histórico
Niels Bohr fue el primero en proponer (1923) que la periodicidad en las propiedades de los elementos se podía explicar mediante la estructura electrónica del átomo.5Su propuesta se basó en el modelo atómico de Bohr para el átomo, en el cual las capas electrónicas eran órbitas electrónicas a distancias fijas al núcleo. Las configuraciones originales de Bohr hoy parecen extrañas para el químico: al azufre se le asignaba una configuración 2.4.4.6 en vez de 1s2 2s2 2p6 3s2 3p4.
Un año después, E. C. Stoner incorpora el tercer número cuántico de la teoría de Sommerfeld en la descripción de las capas electrónicas, y predice correctamente la estructura de capas del azufre como 2.8.6.6 Sin embargo, ni el sistema de Bohr ni el de Stoner podían describir correctamente los cambios del espectro atómico en uncampo magnético (efecto Zeeman). [1]
Distribución electrónica
Es la distribución de los electrones en los subniveles y orbitales de un átomo. La configuración electrónica de los elementos se rige según el diagrama de Moeller:
Para comprender el diagrama de Moeller se utiliza la siguiente tabla:
s | p | d | f | |
---|---|---|---|---|
Para encontrar la distribución electrónica se escriben las notaciones en forma diagonal desde arriba hacia abajo y de derecha a izquierda (seguir colores):
Este principio de construcción (denominado principio de Aufbau, del alemán Aufbau que significa 'construcción') fue una parte importante del concepto original de Bohr de configuración electrónica. Puede formularse como:7
- sólo se pueden ocupar los orbitales con un máximo de dos electrones, en orden creciente de energía orbital: los orbitales de menor energía se llenan antes que los de mayor energía.
Así, vemos que se puede utilizar el orden de energías de los orbitales para describir la estructura electrónica de los átomos de los elementos. Un subnivel s se puede llenar con 1 o 2 electrones. El subnivel p puede contener de 1 a 6 electrones; el subnivel d de 1 a 10 electrones y el subnivel f de 1 a 14 electrones. Ahora es posible describir la estructura electrónica de los átomos estableciendo el subnivel o distribución orbital de los electrones. Los electrones se colocan primero en los subniveles de menor energía y cuando estos están completamente ocupados, se usa el siguiente subnivel de energía superior. Esto puede representarse por la siguiente tabla:
s | p | d | f | |
---|---|---|---|---|
Para encontrar la configuración electrónica se usa el mismo procedimiento anterior incluyendo esta vez el número máximo de electrones para cada orbital.
Finalmente la configuración queda de la siguiente manera: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f14 5d10 6p6 7s2 5f14 6d10 7p6
Para determinar la configuración electrónica de un elemento, basta con calcular cuántos electrones hay que acomodar y entonces distribuirlos en los subniveles empezando por los de menor energía e ir llenando hasta que todos los electrones estén distribuidos. Un elemento con número atómico mayor tiene un electrón más que el elemento que lo precede. El subnivel de energía aumenta de esta manera:
- Subnivel s, p, d o f: Aumenta el nivel de energía.
Sin embargo, existen excepciones, como ocurre en los elementos de transición al ubicarnos en los grupos del cromo y del cobre, en los que se promueve el electrón dando así una configuración fuera de lo común.
Estructura electrónica y tabla periódica
Bloques de la tabla periódica
La forma de la tabla periódica está íntimamente relacionada con la configuración electrónica de los átomos de los elementos. Por ejemplo, todos los elementos delgrupo 1 tienen una configuración de [E] ns1 (donde [E] es la configuración del gas inerte correspondiente), y tienen una gran semejanza en sus propiedades químicas. La capa electrónica más externa se denomina "capa de valencia" y (en una primera aproximación) determina las propiedades químicas. Conviene recordar que el hecho de que las propiedades químicas eran similares para los elementos de un grupo fue descubierto hace más de un siglo, antes incluso de aparecer la idea de configuración electrónica.8 No está claro cómo explica la regla de Madelung (que más bien describe) la tabla periódica,9 ya que algunas propiedades (tales como el estado de oxidación +2 en la primera fila de los metales de transición) serían diferentes con un orden de llenado de orbitales distinto.
Regla de exclusión de Pauli
Esta regla nos dice que en un estado cuántico solo puede haber un electrón. De aquí salen los valores del espín o giro de los electrones que es 1/2 y con proyecciones .
También que en una orientación deben caber dos electrones excepto cuando el número de electrones se ha acabado, por lo cual el orden que debe seguir este ordenamiento en cada nivel es primero los de espín positivo (+1/2) y luego los negativos.
El principio de exclusión de Pauli fue un principio cuántico enunciado por Wolfgang Ernst Pauli en 1925. Establece que no puede haber dos fermiones con todos sus números cuánticos idénticos (esto es, en el mismo estado cuántico de partícula individual). Perdió la categoría de principio, pues deriva de supuestos más generales: de hecho, es una consecuencia del teorema de la estadística del spin. El principio de exclusión de Pauli sólo se aplica a fermiones, esto es, partículas que forman estados cuánticos antisimétricos y que tienen espín semientero. Son fermiones, por ejemplo, los protones, los neutrones y los electrones, los tres tipos de partículas subatómicas que constituyen la materia ordinaria. El principio de exclusión de Pauli rige, así pues, muchas de las características distintivas de la materia. En cambio, partículas como el fotón y el (hipotético) gravitón no obedecen a este principio, ya que son bosones, esto es, forman estados cuánticos simétricos y tienen espín entero. Como consecuencia, una multitud de fotones puede estar en un mismo estado cuántico de partícula, como en los láseres. "Dos electrones en la corteza de un átomo no pueden tener al mismo tiempo los mismos números cuánticos". Es sencillo derivar el principio de Pauli, basándonos en el artículo de partículas idénticas. Los fermiones de la misma especie forman sistemas con estados totalmente antisimétricos, lo que para el caso de dos partículas significa que:
mismo estado cuántico |ψ>, el estado del sistema completo es |ψψ>.
Regla del octeto
Para que un átomo sea estable debe tener todos sus orbitales llenos (cada orbital con dos electrones, uno de espín +½ y otro de espín -½) Por ejemplo, el oxígeno, que tiene configuración electrónica 1s², 2s², 2p4, debe llegar a la configuración 1s², 2s², 2p6 con la cual los niveles 1 y 2 estarían llenos. Recordemos que la Regla del octeto, justamente establece que el nivel electrónico se completa con 8 electrones, excepto el hidrógeno, que se completa con 2 electrones. Entonces el oxígeno tendrá la tendencia a ganar los 2 electrones que le faltan, por esto se combina con 2 átomos de hidrógeno (en el caso del agua, por ejemplo), que cada uno necesita 1 electrón (el cual recibe del oxígeno) y otorga a dicho átomo 1 electrón cada uno. De este modo, cada hidrógeno completó el nivel 1 y el oxígeno completó el nivel 2.
En química se denomina orbital a la zona del espacio que rodea a un núcleo atómico donde la probabilidad de encontrar un electrón es máxima, cercana al 91%. Ejemplo de ello: 10Ne: 1s2, 2s2, 2p6 regla del octeto: 11Na:(Ne)10, 1s2, 2s2, 2p6, 3s1
Anomalías de configuración electrónica
Al desarrollar la configuración electrónica, encontramos una serie de excepciones. Por ejemplo, es más estable llenar dos medios orbitales que completar uno y dejar el otro a uno o dos electrones de estar completado a la mitad. Así, los metales del grupo 6 en vez de tener los orbitales externos s completos y el orbital d a un electrón de estar semi-completo, donarán un electrón del orbital s al orbital d, quedando ambos completos a la mitad: s1d5 en vez de s2d4. Igualmente, es más estable rellenar los orbitales d completamente, por lo que los elementos del grupo 11 tenderán a adoptar la configuración s1d10 en vez de s2d9. Ejemplos de estas anomalías son:
Grupo VIB:
24Cr: 1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d4 : es incorrecto.
24Cr: 1s2, 2s2, 2p6, 3s2, 3p6, 4s1, 3d5 : es correcto.
Grupo IB:
29Cu: 1s2, 2s2, 2p6, 3s2, 3p6, 4s1, 3d10 : es correcto.
ER: n + l
Donde:
n: nivel l: subnivel
Ejemplo:
4s: 4 + 0 : 4
3p: 3 + 1 : 4
4d: 4 + 2 : 6
5f: 5 + 3 : 8
6g: 6 + 4 : 10
7h: 7 + 5 : 12
Orbital o REEMPE
En química se usa la expresión REEMPE para designar el valor esperado de un operador densidad de estados de dos electrones con . En otras palabras: la región donde existe mayor posibilidad de encontrar como máximo 2 electrones que se mueven en forma paralela y en sentidos contrarios. Su nombre proviene deRegión de Espacio Energético de Manifestación Probabilística del Electrón.
Introducción
Recuerda que lo átomos tienen un núcleo donde se encuentran los protones y los neutrones, pero alrededor del núcleo están los electrones girando en las llamadas órbitas. Un átomo puede tener varias órbitas alrededor de su núcleo y sobre las cuales están girando sus electrones.
Primero te vamos a explicar todo de forma sencilla para que lo entiendas. Luego te enseñaremos una regla muy sencilla para obtener la configuración electrónica de cualquier elemento, pero es bueno que intentes entender el cómo y el por qué.
¿Cómo saber los electrones que tienen los átomos en cada órbita? Pues bien, eso es lo que se llama la configuración electrónica de un elemento de la tabla periódica. Nos dice como están ordenados los electrones en los distintos niveles de energía, o lo que es lo mismo como están distribuidos alrededor del núcleo de su átomo.
¿Para que queremos saber esto?. Por ejemplo, es muy útil (imprescindible) para hacer el enlace covalente y los enlaces iónicos y conocer los llamados electrones de valencia, que son el número de electrones que tiene el átomo de un elemento en su última capa u órbita (subnivel).
Lo primero, cuanto más alejado del núcleo esté girando el electrón mayor es su nivel de energía. Los electrones, de un átomo, que tengan la misma energía se dice que están en el mismo nivel de energía. Estos niveles de energía también se llaman orbitales de energía.
Orbitales de Energía
En la actualidad la periferia del núcleo (su alrededor) se divide en 7 niveles de energía diferentes, numerados del 1 al 7, y en los que están distribuidos los electrones, lógicamente en orden según su nivel de energía. Los electrones con menos energía estarán girando en el nivel 1.
Pero además cada nivel se divide en subniveles. Estos subniveles en los que se divide cada nivelpueden llegar a ser hasta 4. A estos 4 subniveles se les llama: s, p, d, f.
Resumen: niveles de energía hay del 1 al 7 y subniveles hay 4 el s, p, d y el f.
OJO hay átomos que no tienen los 4 subniveles, como veremos más adelante, y átomos que no tienen los 7 niveles de energía, tienen menos. Esto es precisamente lo que queremos averiguar, cuantos niveles y subniveles de energía tiene un átomo concreto y cuantos electrones tiene en cada uno de estos subniveles y niveles, es decir su Configuración Electrónica.
Además, hay algo muy importante, en cada subnivel solo podemos tener un número máximo de electrones. Esto hace que podamos saber el número de electrones fácilmente, o lo que es lo mismo la configuración electrónica.
En el subnivel s solo puede haber como máximo 2 electrones, en el p 6, en el d 10 y en el f 14. (en cada nivel 4 más que en el nivel anterior, es fácil de recordar)
Fíjate en la imagen que en el nivel 1 (no se aprecia el círculo en la imagen pero está ahí) solo se permiten 2 electrones girando en ese nivel y además solo tiene un subnivel, el s. No hay ningún átomo que tenga más de 2 electrones girando en el primer nivel de energía (puede tener 1 o 2 átomos).
Si ahora pasamos al nivel 2, vemos que tiene 2 subniveles, lógicamente el s y el p. Pero claro en el nivel s solo habrá como máximo 2 electrones y en el p como máximo 6. Si seguimos viendo la imagen nos daremos cuenta de lo siguiente.
¡¡¡IMPORTANTE NIVELES Y SUBNIVELES!!!
Fíjate que fácil: En el nivel 1 hay un subnivel, en el 2, 2 subniveles, en el 3, 3 subniveles y en el 4 hay 4 subniveles. ¿Fácil NO?. Los últimos niveles un poco diferentes, por ejemplo en el 5, hay 4 subniveles, no puede tener más porque solo existen 4. Y ahora vamos a contar al revés, en el nivel 6, 3 subniveles y en el último nivel, el 7 solo habrá...¿Cuantos? Pues si, habrá 2 subniveles.
Además, si hay un subnivel siempre será el s, si hay 2 serán el s y el p, si hay 3 serán el s, el p y el d, y si hay 4 subniveles serán el s, el p, el d y el f.
Concretemos más nivel a nivel:
- Primero de todo, recordar que en el subnivel s solo puede haber como máximo 2 electrones, en el p 6, en el d 10 y en el f 14. En cada nivel tendremos:
- En el nivel 1 solo hay un subnivel, y lógicamente será el s.
- El nivel 2 hay 2 subniveles, el s y el p.
- En el nivel 3 hay 3 subniveles el s, el p y el d.
- En el nivel 4 hay 4 subniveles, el s, el p, el d y el f.
Pero OJO el nivel 5 tiene 4 subniveles también, pero en el nivel 6 solo tiene 3 (hasta el d) y en el 7 solo dos subniveles el s y el p.
Fíjate como quedarían cada nivel:
OJO antes de llegar a un nivel superior tendremos que rellenar los niveles más bajo de energía de electrones. Para llegar al nivel 2p, primero tenemos que llenar de electrones el 1s (con 2 electrones), el 2s (con otros 2) y luego ya llenaríamos el 2p con un máximo de hasta 6, como ya sabemos.
Según esta tabla podríamos saber....
¿Cuantos electrones máximos Podemos tener en cada Nivel de Energía?
- En el nivel 1 solo soporta hasta orbitales s (subnivel), por lo tanto, podríamos tener como máximo 2 electrones.
- En el 2, hasta p, por lo tanto, podríamos tener 2 de s y 6 de p, en total 8 electrones.
- En el 3, hasta d, por lo tanto, 2 de s, 6 de p y 10 de d= 18.
- en el 4, hasta f, por lo tanto, 2 de s, 6 de p, 10 de d y 14 de f = 32.
- En el 5, hasta f igual es decir 32.
- En el 6, hasta d (comienzas a perder energía) puede tener como máximo 18 electrones.
- En el 7, hasta p, como máximo 8 electrones.
Como podemos apreciar ningún átomo tendrá una configuración 6f, por ejemplo, pero si 4f en su configuración.
Bien pues ahora si supiéramos cuantos electrones tiene un elemento concreto de la tabla periódica, ya podríamos saber como se distribuyen esos electrones alrededor de su núcleo. El número de electrones que tiene el átomo de cada una de los elementos diferentes que conocemos viene en la tabla periódica de los elementos, es su número atómico o Z.
No te líes que es muy fácil. De todas formas veremos como ni siquiera debemos saber esto para hacer la configuración electrónica de un elemento, aunque sería bueno entenderlo.
Veamos algunos ejemplos. Imaginemos el Helio. Sabemos que tiene 2 electrones. ¿Cómo estarán distribuidos?. Sencillo. El primer nivel permite 2 átomos, pues ahí estarán sus dos electrones. Además el primer nivel solo permite un subnivel, el s, y en este subnivel puede tener un máximo de 2 electrones. Conclusión estarán girando alrededor del nivel 1 y sus dos electrones estarán en el subnivel s, del nivel de energía 1.
Cuando queremos hacer la configuración electrónica de un elemento concreto, por ejemplo la de Helio del caso anterior, tendremos que tener una forma de expresarlo y que todo el mundo utilice la misma forma. Bien veamos de que forma se hace.
Si te fijas en la imagen, se pone un número que nos dice de qué nivel de energía estamos hablando, detrás y en minúscula, la letra del subnivel de ese nivel del que estamos hablando, y un exponente sobre la letra del subnivel que nos dice el número de electrones que hay en ese subnivel. En este caso como es el subnivel s nunca podría tener un exponente mayor de 2, ya que son los máximos electrones que puede tener este subnivel. ¡¡¡Ya tenemos la configuración electrónica del Helio!!!.
La más fácil será la del Hidrógeno, que tiene un electrón. Será 1s1 . ¿Fácil NO?.
¿Y si tiene 3 electrones? Por ejemplo el caso del Litio (Li). Tendrá 2 electrones en el primer nivel (son los máximos), y uno en el segundo. ¿Cómo lo expresamos?
1s2 2s1 En el nivel de energía 1 y subnivel s = 2 electrones, ya estaría llena por lo que pasamos al nivel 2. En este nivel estará el electrón que nos falta por acomodar. Lo acomodamos en el primer subnivel del nivel 2. El primer subnivel de un nivel es siempre el s, el segundo el p, el tercero el d y el cuarto el f. Luego 2s1 significa nivel 2 subnivel s con un electrón. Ya tenemos los 3 electrones del Litio en su sitio y expresada correctamente su configuración electrónica.
Si tuviéramos más electrones iríamos poniendo el cuarto en el nivel 2 y en el subnivel s (que ya sabemos que entran 2), pero si tuviéramos 5 tendríamos que poner el quinto en el nivel 2 pero en la capa p. Así sucesivamente.
Pero para esto es mejor utilizar un esquema muy sencillo, ya que algunas veces, antes del llenar algún subnivel posible de un nivel, se llena un subnivel de otro nivel superior.
El orden en el que se van llenando los niveles de energía es: 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p. OJO Fíjate que antes de llenarse el nivel 3 por completo, se empieza a llenar el nivel 4. (pasa del 3s, 3p al 4s y no al 3d). Pero tranquilo para esto hay un esquema muy sencillo.
El esquema de llenado de los orbitales atómicos, lo podemos tener utilizando la regla de la diagonal. Deberás seguir atentamente la flecha del esquema comenzando en 1s; siguiendo la flecha podrás ir completando los orbitales con los electrones en forma correcta.
Es importante recordar que los orbitales se van llenando en el orden en que aparecen, siguiendo esas diagonales, empezando siempre por el 1s.
Con esta simple regla, sabiéndose la imagen anterior es muy fácil sacar la configuración electronica de cualquier elemento. Veamos como se hace ya definitivamente.
Configuración Electrónica
Recuerda que en cada subnivel hay un número máximo de electrones s = 2e-, p = 6e-, d = 10e- y f = 14e-
En el subnivel s solo puede haber como máximo 2 electrones, en el p 6, en el d 10 y en el f 14.
Si hacemos la configuración electrónica de un átomo de un elemento con 10 electrones (número atómico que se saca de la tabla periódica, es el Neón) siguiendo la regla de la diagonal su configuración quedaría así:
1s2 2s2 2p6
Explicación
Siguiendo el esquema empezamos por el nivel 1s el cual lo llenamos con su número máximo de electrones (2) y sería 2s2, como nos faltan 8 electrones más siguiendo el esquema pasamos al nivel 2s, que también como es nivel s solo puede tener 2 electrones, por lo tanto 2s2. Ahora pasamos al nivel 2p que por ser nivel p puede tener como máximo 6 electrones, precisamente los que nos faltan para llegar a 10,por lo tanto sería 2p6. Al final queda:
1s2 2s2 2p6
¿Y si tuviera 9 electrones? pues muy sencillo igual pero al llegar al nivel 2p solo pondríamos 5 electrones en ese nivel, 2p5 y quedaría 1s2 2s2 2p5. el nivel 2p no se llena por completo. ¿Fácil no?
Cuantos electrones tiene un átomo en su última capa? Pues en el caso del de 10 electrones en su última capa tendrá 6 electrones y el en el caso del 9, en su última capa tendrá 5. Estos son sus electrones de valencia.
Por cierto el de 9 electrones el es Flúor (F) y el de 10 el Neón (Ne). Lo puedes comprobar en la tabla periódica de los elementos.
Veamos algunos ejemplos más:
Configuracion electronica del Nitrogeno: Lo primero miramos en la tabla periódica y tiene un número atómico = 7. Con esto sacamos su configuración:
Nitrógeno: 1s2 2s2 2p3
Aquí tienes más ejemplos. Te ponemos el Z o número atómico primero (en negrita) y luego la configuración electrónica:
Hidrógeno 1 = 1s1
Helio 2 = 1s2
Litio 3 = 1s2 2s1
Berilio 4 = 1s2 2s2
Boro 5 = 1s2 2s2 2p1
Carbono 6 = 1s2 2s2 2p2
Nitrógeno 7 = 1s2 2s2 2p3
Oxígeno 8 = 1s2 2s2 2p4
Flúor 9 = 1s2 2s2 2p5
Neón 10 = 1s2 2s2 2p6
Sodio 11 = 1s2 2s2 2p6 3s1
Magnesio 12 = 1s2 2s2 2p6 3s2
Aluminio 13 = 1s2 2s2 2p6 3s2 3p1
Silicio 14 = 1s2 2s2 2p6 3s2 3p2
Fósforo 15 = 1s2 2s2 2p6 3s2 3p3
Azufre 16 = 1s2 2s2 2p6 3s2 3p4
Cloro 17 = 1s2 2s2 2p6 3s2 3p5
Argón 18 = 1s2 2s2 2p6 3s2 3p6
Potasio 19 = 1s2 2s2 2p6 3s2 3p6 4s1
Calcio 20 = 1s2 2s2 2p6 3s2 3p6 4s2
Recuerda que lo átomos tienen un núcleo donde se encuentran los protones y los neutrones, pero alrededor del núcleo están los electrones girando en las llamadas órbitas. Un átomo puede tener varias órbitas alrededor de su núcleo y sobre las cuales están girando sus electrones.
Primero te vamos a explicar todo de forma sencilla para que lo entiendas. Luego te enseñaremos una regla muy sencilla para obtener la configuración electrónica de cualquier elemento, pero es bueno que intentes entender el cómo y el por qué.
¿Cómo saber los electrones que tienen los átomos en cada órbita? Pues bien, eso es lo que se llama la configuración electrónica de un elemento de la tabla periódica. Nos dice como están ordenados los electrones en los distintos niveles de energía, o lo que es lo mismo como están distribuidos alrededor del núcleo de su átomo.
¿Para que queremos saber esto?. Por ejemplo, es muy útil (imprescindible) para hacer el enlace covalente y los enlaces iónicos y conocer los llamados electrones de valencia, que son el número de electrones que tiene el átomo de un elemento en su última capa u órbita (subnivel).
Lo primero, cuanto más alejado del núcleo esté girando el electrón mayor es su nivel de energía. Los electrones, de un átomo, que tengan la misma energía se dice que están en el mismo nivel de energía. Estos niveles de energía también se llaman orbitales de energía.
Orbitales de Energía
En la actualidad la periferia del núcleo (su alrededor) se divide en 7 niveles de energía diferentes, numerados del 1 al 7, y en los que están distribuidos los electrones, lógicamente en orden según su nivel de energía. Los electrones con menos energía estarán girando en el nivel 1.
Pero además cada nivel se divide en subniveles. Estos subniveles en los que se divide cada nivelpueden llegar a ser hasta 4. A estos 4 subniveles se les llama: s, p, d, f.
Resumen: niveles de energía hay del 1 al 7 y subniveles hay 4 el s, p, d y el f.
OJO hay átomos que no tienen los 4 subniveles, como veremos más adelante, y átomos que no tienen los 7 niveles de energía, tienen menos. Esto es precisamente lo que queremos averiguar, cuantos niveles y subniveles de energía tiene un átomo concreto y cuantos electrones tiene en cada uno de estos subniveles y niveles, es decir su Configuración Electrónica.
Además, hay algo muy importante, en cada subnivel solo podemos tener un número máximo de electrones. Esto hace que podamos saber el número de electrones fácilmente, o lo que es lo mismo la configuración electrónica.
En el subnivel s solo puede haber como máximo 2 electrones, en el p 6, en el d 10 y en el f 14. (en cada nivel 4 más que en el nivel anterior, es fácil de recordar)
Fíjate en la imagen que en el nivel 1 (no se aprecia el círculo en la imagen pero está ahí) solo se permiten 2 electrones girando en ese nivel y además solo tiene un subnivel, el s. No hay ningún átomo que tenga más de 2 electrones girando en el primer nivel de energía (puede tener 1 o 2 átomos).
Si ahora pasamos al nivel 2, vemos que tiene 2 subniveles, lógicamente el s y el p. Pero claro en el nivel s solo habrá como máximo 2 electrones y en el p como máximo 6. Si seguimos viendo la imagen nos daremos cuenta de lo siguiente.
¡¡¡IMPORTANTE NIVELES Y SUBNIVELES!!!
Fíjate que fácil: En el nivel 1 hay un subnivel, en el 2, 2 subniveles, en el 3, 3 subniveles y en el 4 hay 4 subniveles. ¿Fácil NO?. Los últimos niveles un poco diferentes, por ejemplo en el 5, hay 4 subniveles, no puede tener más porque solo existen 4. Y ahora vamos a contar al revés, en el nivel 6, 3 subniveles y en el último nivel, el 7 solo habrá...¿Cuantos? Pues si, habrá 2 subniveles.
Además, si hay un subnivel siempre será el s, si hay 2 serán el s y el p, si hay 3 serán el s, el p y el d, y si hay 4 subniveles serán el s, el p, el d y el f.
Concretemos más nivel a nivel:
- Primero de todo, recordar que en el subnivel s solo puede haber como máximo 2 electrones, en el p 6, en el d 10 y en el f 14. En cada nivel tendremos:
- En el nivel 1 solo hay un subnivel, y lógicamente será el s.
- El nivel 2 hay 2 subniveles, el s y el p.
- En el nivel 3 hay 3 subniveles el s, el p y el d.
- En el nivel 4 hay 4 subniveles, el s, el p, el d y el f.
Pero OJO el nivel 5 tiene 4 subniveles también, pero en el nivel 6 solo tiene 3 (hasta el d) y en el 7 solo dos subniveles el s y el p.
Fíjate como quedarían cada nivel:
OJO antes de llegar a un nivel superior tendremos que rellenar los niveles más bajo de energía de electrones. Para llegar al nivel 2p, primero tenemos que llenar de electrones el 1s (con 2 electrones), el 2s (con otros 2) y luego ya llenaríamos el 2p con un máximo de hasta 6, como ya sabemos.
Según esta tabla podríamos saber....
¿Cuantos electrones máximos Podemos tener en cada Nivel de Energía?
- En el nivel 1 solo soporta hasta orbitales s (subnivel), por lo tanto, podríamos tener como máximo 2 electrones.
- En el 2, hasta p, por lo tanto, podríamos tener 2 de s y 6 de p, en total 8 electrones.
- En el 3, hasta d, por lo tanto, 2 de s, 6 de p y 10 de d= 18.
- en el 4, hasta f, por lo tanto, 2 de s, 6 de p, 10 de d y 14 de f = 32.
- En el 5, hasta f igual es decir 32.
- En el 6, hasta d (comienzas a perder energía) puede tener como máximo 18 electrones.
- En el 7, hasta p, como máximo 8 electrones.
Como podemos apreciar ningún átomo tendrá una configuración 6f, por ejemplo, pero si 4f en su configuración.
Bien pues ahora si supiéramos cuantos electrones tiene un elemento concreto de la tabla periódica, ya podríamos saber como se distribuyen esos electrones alrededor de su núcleo. El número de electrones que tiene el átomo de cada una de los elementos diferentes que conocemos viene en la tabla periódica de los elementos, es su número atómico o Z.
No te líes que es muy fácil. De todas formas veremos como ni siquiera debemos saber esto para hacer la configuración electrónica de un elemento, aunque sería bueno entenderlo.
Veamos algunos ejemplos. Imaginemos el Helio. Sabemos que tiene 2 electrones. ¿Cómo estarán distribuidos?. Sencillo. El primer nivel permite 2 átomos, pues ahí estarán sus dos electrones. Además el primer nivel solo permite un subnivel, el s, y en este subnivel puede tener un máximo de 2 electrones. Conclusión estarán girando alrededor del nivel 1 y sus dos electrones estarán en el subnivel s, del nivel de energía 1.
Cuando queremos hacer la configuración electrónica de un elemento concreto, por ejemplo la de Helio del caso anterior, tendremos que tener una forma de expresarlo y que todo el mundo utilice la misma forma. Bien veamos de que forma se hace.
Si te fijas en la imagen, se pone un número que nos dice de qué nivel de energía estamos hablando, detrás y en minúscula, la letra del subnivel de ese nivel del que estamos hablando, y un exponente sobre la letra del subnivel que nos dice el número de electrones que hay en ese subnivel. En este caso como es el subnivel s nunca podría tener un exponente mayor de 2, ya que son los máximos electrones que puede tener este subnivel. ¡¡¡Ya tenemos la configuración electrónica del Helio!!!.
La más fácil será la del Hidrógeno, que tiene un electrón. Será 1s1 . ¿Fácil NO?.
¿Y si tiene 3 electrones? Por ejemplo el caso del Litio (Li). Tendrá 2 electrones en el primer nivel (son los máximos), y uno en el segundo. ¿Cómo lo expresamos?
1s2 2s1 En el nivel de energía 1 y subnivel s = 2 electrones, ya estaría llena por lo que pasamos al nivel 2. En este nivel estará el electrón que nos falta por acomodar. Lo acomodamos en el primer subnivel del nivel 2. El primer subnivel de un nivel es siempre el s, el segundo el p, el tercero el d y el cuarto el f. Luego 2s1 significa nivel 2 subnivel s con un electrón. Ya tenemos los 3 electrones del Litio en su sitio y expresada correctamente su configuración electrónica.
Si tuviéramos más electrones iríamos poniendo el cuarto en el nivel 2 y en el subnivel s (que ya sabemos que entran 2), pero si tuviéramos 5 tendríamos que poner el quinto en el nivel 2 pero en la capa p. Así sucesivamente.
Pero para esto es mejor utilizar un esquema muy sencillo, ya que algunas veces, antes del llenar algún subnivel posible de un nivel, se llena un subnivel de otro nivel superior.
El orden en el que se van llenando los niveles de energía es: 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p. OJO Fíjate que antes de llenarse el nivel 3 por completo, se empieza a llenar el nivel 4. (pasa del 3s, 3p al 4s y no al 3d). Pero tranquilo para esto hay un esquema muy sencillo.
El esquema de llenado de los orbitales atómicos, lo podemos tener utilizando la regla de la diagonal. Deberás seguir atentamente la flecha del esquema comenzando en 1s; siguiendo la flecha podrás ir completando los orbitales con los electrones en forma correcta.
Es importante recordar que los orbitales se van llenando en el orden en que aparecen, siguiendo esas diagonales, empezando siempre por el 1s.
Con esta simple regla, sabiéndose la imagen anterior es muy fácil sacar la configuración electronica de cualquier elemento. Veamos como se hace ya definitivamente.
Configuración Electrónica
Recuerda que en cada subnivel hay un número máximo de electrones s = 2e-, p = 6e-, d = 10e- y f = 14e-
En el subnivel s solo puede haber como máximo 2 electrones, en el p 6, en el d 10 y en el f 14.
Si hacemos la configuración electrónica de un átomo de un elemento con 10 electrones (número atómico que se saca de la tabla periódica, es el Neón) siguiendo la regla de la diagonal su configuración quedaría así:
1s2 2s2 2p6
Explicación
Siguiendo el esquema empezamos por el nivel 1s el cual lo llenamos con su número máximo de electrones (2) y sería 2s2, como nos faltan 8 electrones más siguiendo el esquema pasamos al nivel 2s, que también como es nivel s solo puede tener 2 electrones, por lo tanto 2s2. Ahora pasamos al nivel 2p que por ser nivel p puede tener como máximo 6 electrones, precisamente los que nos faltan para llegar a 10,por lo tanto sería 2p6. Al final queda:
1s2 2s2 2p6
¿Y si tuviera 9 electrones? pues muy sencillo igual pero al llegar al nivel 2p solo pondríamos 5 electrones en ese nivel, 2p5 y quedaría 1s2 2s2 2p5. el nivel 2p no se llena por completo. ¿Fácil no?
Cuantos electrones tiene un átomo en su última capa? Pues en el caso del de 10 electrones en su última capa tendrá 6 electrones y el en el caso del 9, en su última capa tendrá 5. Estos son sus electrones de valencia.
Por cierto el de 9 electrones el es Flúor (F) y el de 10 el Neón (Ne). Lo puedes comprobar en la tabla periódica de los elementos.
Veamos algunos ejemplos más:
Configuracion electronica del Nitrogeno: Lo primero miramos en la tabla periódica y tiene un número atómico = 7. Con esto sacamos su configuración:
Nitrógeno: 1s2 2s2 2p3
Aquí tienes más ejemplos. Te ponemos el Z o número atómico primero (en negrita) y luego la configuración electrónica:
Hidrógeno 1 = 1s1
Helio 2 = 1s2
Litio 3 = 1s2 2s1
Berilio 4 = 1s2 2s2
Boro 5 = 1s2 2s2 2p1
Carbono 6 = 1s2 2s2 2p2
Nitrógeno 7 = 1s2 2s2 2p3
Oxígeno 8 = 1s2 2s2 2p4
Flúor 9 = 1s2 2s2 2p5
Neón 10 = 1s2 2s2 2p6
Sodio 11 = 1s2 2s2 2p6 3s1
Magnesio 12 = 1s2 2s2 2p6 3s2
Aluminio 13 = 1s2 2s2 2p6 3s2 3p1
Silicio 14 = 1s2 2s2 2p6 3s2 3p2
Fósforo 15 = 1s2 2s2 2p6 3s2 3p3
Azufre 16 = 1s2 2s2 2p6 3s2 3p4
Cloro 17 = 1s2 2s2 2p6 3s2 3p5
Argón 18 = 1s2 2s2 2p6 3s2 3p6
Potasio 19 = 1s2 2s2 2p6 3s2 3p6 4s1
Calcio 20 = 1s2 2s2 2p6 3s2 3p6 4s2
No hay comentarios:
Publicar un comentario