Geometría proyectiva
proyección estereográfica es un sistema de representación gráfico en el cual se
proyecta la superficie de una esfera sobre un plano mediante un conjunto de rectas que pasan por un punto, o foco. El plano de proyección es tangente a la esfera, o paralelo a éste, y el foco es el punto de la esfera diametralmente opuesto al punto de tangencia del plano con la esfera.
La superficie que puede representar es mayor que un
hemisferio. El rasgo más característico es que la
escala aumenta a medida que nos alejamos del centro.
En su proyección polar los
meridianos son líneas rectas, y los paralelos son círculos concéntricos. En la proyección ecuatorial sólo son líneas rectas el
ecuador y el meridiano central.
Esquema ilustrativo de una proyección azimutal estereográfica.
PROYECCIÓN ESTEREOGRÁFICA
La aplicación más común de la proyección estereográfica en cristalografía es que permite representar los ángulos entre las caras del cristal y las relaciones de simetría entre ellas.
En ésta, cada punto (polo) es el resultado de la proyección esférica de cada una de las caras cristalinas a través de los radios de la esfera, suponiendo el cristal incluido en el centro de una esfera,
y de la unión de estos puntos de proyección esférica con el polo S, si se encuentran en el hemisferio norte, y en el polo N si se encuentran en el hemisferio sur, obteniéndose de ello un punto de corte con el plano ecuatorial que es el polo proyección de la cara.
Si el cristal se imagina dentro de una esfera centrada sobre un punto arbitrario dentro del cristal, y cada cara se representa como un punto de corte con el plano ecuatorial, originado por la proyección a un polo desde la normal a la cara que corta a la esfera, los puntos de intersección son enteramente independientes del tamaño relativo, y la simetría que relaciona dichos puntos revela la verdadera simetría del cristal.
- (a) Cualquier círculo que pase a través del polo sur se proyecta como una línea recta ya que las líneas que unen cada punto del círculo con el polo de proyección son coplanares.
- (b) Todos los círculos que son coplanares con el centro de la esfera de proyección se proyectan como círculos mayores e intersectan el círculo primitivo en los bordes finales del diámetro.
- (c) Si el círculo pasa a través del polo sur, se proyectará como un diámetro de la superficie ecuatorial ya que el círculo es coplanar con su proyección.
- (d) Se llama círculo menor a la proyección de todos los planos que no pasen por el centro de la esfera. Su proyección estereográfica produce un número de pequeños arcos circulares que gradúan los círculos mayores o máximos al cruzarlos.
Con los diámetros y los círculos mayores y menores queda construida la red estereográfica o plantilla de Wulf en honor al cristalógrafo ruso que la publicó en 1902. En ella existen proyecciones estereográficas de un conjunto de círculos mayores inclinados a intervalos de 2º y un conjunto de círculos menores, dibujados con el mismo diámetro del círculo primitivo y espaciados a intervalos de 2º. Los planos de los círculos menores son normales al plano ecuatorial y a los planos de los círculos mayores
El ángulo entre dos caras de un cristal es el ángulo entre sus normales y es equivalente a la distancia angular (medida a través de un círculo mayor de la plantilla de Wulf) entre sus polos.
Una proyección estereográfica completa, de un conjunto de puntos, se denomina estereograma.
Las operaciones de simetría de la morfología cristalina se ilustran estereográficamente como sigue:
Eje binario: El polo (cara cristalina) gira 180º perpendicularmente al eje de rotación. Si el eje de rotación es perpendicular al plano ecuatorial, el polo girará en este círculo primitivo:
Si el eje está incluido en el plano ecuatorial, el polo girará 180º siguiendo el círculo mayor correspondiente.
Eje ternario: El polo gira 120º perpendicularmente al eje de rotación. Si el eje de rotación es perpendicular al plano ecuatorial, el polo girará en este círculo primitivo:
Eje cuaternario: El polo gira 90º perpendicularmente al eje de rotación. Si el eje de rotación es perpendicular al plano ecuatorial, el polo girará en este círculo primitivo:
Si el eje está incluido en el plano ecuatorial, el polo girará 180º siguiendo el círculo mayor correspondiente.
Eje senario: El polo gira 60º perpendicularmente al eje de rotación. Si el eje de rotación es perpendicular al plano ecuatorial, el polo girará en este círculo primitivo:
Centro de simetría: El polo dibujado en negro es rotado 360º en el hemisferio superior e invertido a través del centro de simetría hasta mostrar un polo (se dibuja hueco) en el hemisferio sur.
Plano de simetría: El polo dibujado en negro es rotado 180º en el hemisferio superior e invertido a través del centro de simetría hasta mostrar un polo (se dibuja hueco) en el hemisferio sur. El plano de simetría se corresponde con el plano ecuatorial o círculo primitivo.
Eje de rotoinversión: El polo dibujado en negro gira y se invierte sucesivamente, según el orden del eje de simetría. Primeramente, girará en el hemisferio norte para poteriormente ser invertido a través del centro de simetría al hemisferios sur (polo hueco), es aquí donde vuelve a girar y a ser posteriormente invertido al hemisferio norte, y así sucesivamente, dependiendo del orden del eje.
La proyección estereográfica es de gran valor en el estudio de los sólidos cristalinos ya que permite que las relaciones angulares entre planos y direcciones sean representadas.
La proyección estereográfica de diferentes caras de formas cúbicas es la siguiente:
No hay comentarios:
Publicar un comentario