SEMICONDUCTORES
Polarización directa
Si el terminal positivo de la fuente está conectado al material tipo p y el terminal negativo de la fuente está conectado al material tipo n, diremos que estamos en "Polarización Directa".
La conexión en polarización directa tendría esta forma:
En este caso tenemos una corriente que circula con facilidad, debido a que la fuente obliga a que los electrones libres y huecos fluyan hacia la unión. Al moverse los electrones libres hacia la unión, se crean iones positivos en el extremo derecho de la unión que atraerán a los electrones hacia el cristal desde el circuito externo.
Así los electrones libres pueden abandonar el terminal negativo de la fuente y fluir hacia el extremo derecho del cristal. El sentido de la corriente lo tomaremos siempre contrario al del electrón.
Lo que le sucede al electrón: Tras abandonar el terminal negativo de la fuente entra por el extremo derecho del cristal. Se desplaza a través de la zona n como electrón libre.
En la unión se recombina con un hueco y se convierte en electrón de valencia. Se desplaza a través de la zona p como electrón de valencia. Tras abandonar el extremo izquierdo del cristal fluye al terminal positivo de la fuente.
Un diodo es un componente electrónico que permite el paso de la corriente en un sentido y lo impide en el contrario. Esta provisto de dos terminales, el ánodo (+) y el cátodo (-) y, por lo general conduce la corriente en el sentido ánodo- cátodo
| |||||||||||||||||||||||||||||||||||||
MODELOS:
1ra Aproximación 2da Aproximación 3ra Aproximación | |||||||||||||||||||||||||||||||||||||
DIODOS ZENER La aplicación de estos diodos se ve en los Reguladores de Tensión y actúa como dispositivo de tensión constante (como una pila). | |||||||||||||||||||||||||||||||||||||
DIODOS LED
Es un tipo de diodo que convierte en luz toda la energía eléctrica que le llega, sin calentarse. Los diodos LED están polarizados es decir solo iluminan cuando están conectados correctamente al generador de corriente. Los LED funcionan con intensidad comprendida entre 10 y 20 mA. Para evitar que se fundan suelen conectarse en serie con una resistencia.
| |||||||||||||||||||||||||||||||||||||
FOTODIODOS | |||||||||||||||||||||||||||||||||||||
Recibe luz, al contrario que el led.Se usa en polarización Inversa. Diodo normal en inversa: | |||||||||||||||||||||||||||||||||||||
DIODOS SCHOTTKY A frecuencias bajas un diodo normal puede conmutar fácilmente cuando la polarización cambia de directa a inversa, pero a medida que aumenta la frecuencia el tiempo de conmutación puede llegar a ser muy alto, poniendo en peligro el dispositivo.El diodo Schottky es la solución ya que puede conmutar más rápido que un diodo normal. El diodo Schottky con polarización directa tiene 0,25 V de barrera de potencial frente a los 0,7 V de un diodo normal. Puede rectificar con facilidad a frecuencias superiores a 300 MHz. Polarización inversa
Se invierte la polaridad de la fuente de continua, el diodo se polariza en inversa, el terminal negativo de la batería conectado al lado p y el positivo al n, esta conexión se denomina "Polarización Inversa".
En la siguiente figura se muestra una conexión en inversa:
El terminal negativo de la batería atrae a los huecos y el terminal positivo atrae a los electrones libres, así los huecos y los electrones libres se alejan de la unión y la z.c.e. se ensancha.
A mayor anchura de la z.c.e. mayor diferencia de potencial, la zona de deplexión deja de aumentar cuando su diferencia de potencial es igual a la tensión inversa aplicada (V), entonces los electrones y huecos dejan de alejarse de la unión.
A mayor la tensión inversa aplicada mayor será la z.c.e.
Existe una pequeña corriente en polarización inversa, porque la energía térmica crea continuamente pares electrón-hueco, lo que hace que halla pequeñas concentraciones de portadores minoritarios a ambos lados, la mayor parte se recombina con los mayoritarios pero los que están en la z.c.e. pueden vivir lo suficiente para cruzar la unión y tenemos así una pequeña corriente.
La zona de deplexión empuja a los electrones hacia la derecha y el hueco a la izquierda, se crea así una la "Corriente Inversa de Saturación"(IS) que depende de la temperatura.
Además hay otra corriente "Corriente Superficial de Fugas" causada por las impurezas del cristal y las imperfecciones en su estructura interna. Esta corriente depende de la tensión de la pila (V ó VP).
Entonces la corriente en inversa (I ó IR) será la suma de esas dos corrientes:
POLARIZACION INVERSA DEL DIODO
En este caso, el polo negativo de la batería se conecta a la zona p y el polo positivo a la zona n, lo que hace aumentar la zona de carga espacial, y la tensión en dicha zona hasta que se alcanza el valor de la tensión de la batería, tal y como se explica a continuación:
= POLARIZACIÓN INVERSA
Si la tensión aplicada externamente al diodo es del mismo signo que la barrera de potencial interna se dice que el diodo está polarizado inversamente. El terminal positivo de la pila atrae a los electrones del material N apartándolos de la unión, mientras que el negativo a trae a las cargas positivas del material P, apartándolos también de la unión. Se crea, por tanto, en la unión, una ausencia de carga, formándose una corriente que recibe el nombre de "corriente inversa de saturación" o "corriente de fuga". Su valor es prácticamente despreciable, pues es del orden de nA (nanoampaerios).
El ancho de la capa agotada aumenta al polarizar la unión en sentido inverso.
a)Sin polarización inversa
b) Al aplicar una polarización inversa,
|
No hay comentarios:
Publicar un comentario