viernes, 22 de abril de 2016

Análisis de circuitos en ingeniería

El Amplificador Operacional

Los primeros amplificadores operacionales fueron fabricados en los años 40’s usando tubos de vacío para llevar a cabo eléctricamente las operaciones matemáticas de suma, resta, multiplicación, división, derivación e integración, permitiendo así la solución eléctrica de ecuaciones diferenciales en las primeras computadoras analógicas.
Un amp-op es una fuente dependiente de voltaje controlada por un voltaje.
ScreenShot139
La fuente de voltaje A Vi aparece en las terminales de salida del amp-op, y el voltaje que lo controla Vi se aplica en las terminales de entrada.
ScreenShot140

Símbolo para el amp-op

Hay dos terminales de entrada y una sola terminal de salida.
ScreenShot141
Hay una terminal común o nodo llamado “tierra” que generalmente no se muestra explícitamente como una terminal del amp-op. El soporte metálico viene a ser el nodo a tierra.
ScreenShot142
La terminal marcada con el signo negativo es la terminal INVERSORA, y la terminal marcada con el signo positivo es la terminal NO INVERSORA
ScreenShot144
Aunque se puede aplicar una única señal de voltaje o fuente de voltaje directamente entre el par de terminales de entrada, puede obtenerse un mayor número de aplicaciones estableciendo un voltaje entre cada terminal de entrada y tierra.
ScreenShot145
V1 es el voltaje entre la terminal inversora y tierra.
V2 es el voltaje entre la terminal no inversora y tierra.
El voltaje de entrada Vi se amplifica muchísimo e invierte su polaridad entre la terminal de salida y tierra.
ScreenShot146
Una fuente dependiente de voltaje controlada por un voltaje, suministra un voltaje de salida igual a “A veces” la diferencia de los dos voltajes de la entrada.
ScreenShot147
El factor de amplificación o ganancia A varía entre 104 y 107 para diferentes amplificadores operacionales.
Un valor ordinario de A es 105
ScreenShot148
ScreenShot149
Si V1 = 0 entonces V2 aparece amplificado, sin cambio de signo, entre la terminal de salida y tierra.
ScreenShot150
Si V2 = 0 entonces V1 aparece amplificado e invertido en la salida.
ScreenShot151

Ejemplo de un amp-op

ScreenShot152
El amplificador operacional viene en un chip de circuito integrado con 8 o 10 terminales para conectarse al circuito externo. El chip puede contener varios amp-ops.
Terminales adicionales permiten la aplicación de voltajes a los transistores para hacer ajustes externos para balancear y compensar el amp-op.
ScreenShot153ScreenShot154
Los modelos más exactos de un amp-op incluyen una resistencia de salida Ro, en serie con la fuente dependiente.
ScreenShot155
La resistencia Ri entre los terminales de entrada es tan grande que se puede representar como un circuito abierto.
ScreenShot156
ScreenShot157
Generalmente hay varios elementos conectados en serie o en paralelo con la entrada o la salida, o entre la entrada y la salida del amp-op.
ScreenShot158
ScreenShot159

El seguidor de voltaje

ScreenShot160
Se considera una resistencia de entrada Ri infinita, es decir un circuito abierto.
ScreenShot161
Se considera una resistencia de salida Ro muy baja, es decir un cortocircuito.
ScreenShot162
ScreenShot163
Se conecta una única señal de entrada Vs entre la entrada no inversora V2 y tierra, tal que
ScreenShot164
Se conecta un cortocircuito entre la entrada inversora V1 y la salida Vo, tal que
ScreenShot165
No hay corriente en ninguna parte del circuito. Por tanto, la LCK no da información adicional.
No hay resistencias en el circuito. Por tanto la Ley de Ohm tampoco puede aplicarse.
Aplicamos LVK para hallar una relación entre Vo y Vs:
ScreenShot166
ScreenShot167
ScreenShot168
Es decir, para todos los efectos prácticos
ScreenShot169
y el voltaje de salida Vo SIGUE al voltaje de entrada Vs.
Se dice que este es un amplificador de GANANCIA UNITARIA, porque
ScreenShot170
La ventaja es que la entrada requiere corriente y potencia despreciables de la fuente. Veámoslo:
ScreenShot171
ScreenShot172
ScreenShot173
Además, la salida puede suministrar corrientes (10 a 20 mA) y potencias (100 a 500 mW) considerables a una carga conectada entre los terminales de la salida.
ScreenShot174
La carga tiene poco efecto sobre la fuente, y por esto es que el seguidor de voltaje también se conoce como AMPLIFICADOR DE AISLAMIENTO O SEPARADOR.
ScreenShot175
ScreenShot176

Ejemplo 1 seguidor de voltaje

Un amp-op tiene una ganancia de 20000 y una Ri de 50 kohm. El amp-op se conecta como seguidor de voltaje con Vs =1V.
Calcule Vo, Vi, Potencia de la fuente Vs
ScreenShot177
ScreenShot178
ScreenShot179

Ejemplo 2 seguidor de voltaje

ScreenShot180
  1. Encuentre Vo si A es grande
  2. Obtener Vx
ScreenShot181

Ejemplo 3 seguidor de voltaje

  1. Determine Vx si A es grande
ScreenShot182ScreenShot183
  1. ¿Cuánto valdrá Vx si el amp-op se elimina del circuito y los puntos a y b se unen?
ScreenShot184
Solución:
ScreenShot185
ScreenShot186
ScreenShot187
ScreenShot188



AMPLIFICADORES OPERACIONALES
INTRODUCCION.-
El concepto original del AO (amplificador operacional) procede del campo de los computadores analógicos, en los que comenzaron a usarse técnicas operacionales en una época tan temprana como en los años 40. El nombre de amplificador operacional deriva del concepto de un amplificador dc (amplificador acoplado en continua) con una entrada diferencial y ganancia extremadamente alta, cuyas características de operación estaban determinadas por los elementos de realimentación utilizados. Cambiando los tipos y disposición de los elementos de realimentación, podían implementarse diferentes operaciones analógicas; en gran medida, las características globales del circuito estaban determinadas sólo por estos elementos de realimentación. De esta forma, el mismo amplificador era capaz de realizar diversas operaciones, y el desarrollo gradual de los amplificadores operacionales dio lugar al nacimiento de una nueva era en los conceptos de diseño de circuitos.
Los primeros amplificadores operacionales usaban el componente básico de su tiempo: la válvula de vacío. El uso generalizado de los AOs no comenzó realmente hasta los años 60, cuando empezaron a aplicarse las técnicas de estado sólido al diseño de circuitos amplificadores operacionales, fabricándose módulos que realizaban la circuitería interna del amplificador operacional mediante diseño discreto de estado sólido. Entonces, a mediados de los 60, se introdujeron los primeros amplificadores operacionales de circuito integrado. En unos pocos años los amplificadores operacionales integrados se convirtieron en una herramienta estándar de diseño, abarcando aplicaciones mucho más allá del ámbito original de los computadores analógicos.
Con la posibilidad de producción en masa que las técnicas de fabricación de circuitos integrados proporcionan, los amplificadores operacionales integrados estuvieron disponibles en grandes cantidades, lo que, a su vez contribuyó a rebajar su coste. Hoy en día el precio de un amplificador operacional integrado de propósito general, con una ganancia de 100 dB, una tensión offset de entrada de 1 mV, una corriente de entrada de 100 nA. Y un ancho de banda de 1 MHz. es inferior a 1 euro. El amplificador, que era un sistema formado antiguamente por muchos componentes discretos, ha evolucionado para convertirse en un componente discreto él mismo, una realidad que ha cambiado por completo el panorama del diseño de circuitos lineales.
Con componentes de ganancia altamente sofisticados disponibles al precio de los componentes pasivos, el diseño mediante componentes activos discretos se ha convertido en una pérdida de tiempo y de dinero para la mayoría de las aplicaciones dc y de baja frecuencia. Claramente, el amplificador operacional integrado ha redefinido las "reglas básicas" de los circuitos electrónicos acercando el diseño de circuitos al de sistemas. Lo que ahora debemos de hacer es a conocer bien los AOs, cómo funciona, cuáles son sus principios básicos y estudiar sus aplicaciones
PRINCIPIOS BASICOS DE LOS AMPLIFICADORES OPERACIONALES
El amplificador operacional ideal.-
Los fundamentos básicos del amplificador operacional ideal son relativamente fáciles. Quizás, lo mejor para entender el amplificador operacional ideal es olvidar todos los pensamientos convencionales sobre los componentes de los amplificadores, transistores, tubos u otros cualesquiera. En lugar de pensar en ellos, piensa en términos generales y considere el amplificador como una caja con sus terminales de entrada y salida. Trataremos, entonces, el amplificador en ese sentido ideal, e ignoraremos qué hay dentro de la caja.
opfig1.gif (4333 bytes)
Fig. 1
V0 = a Vd
a = infinito
Ri = infinito
Ro = 0
BW (ancho de banda) = infinito
V0 = 0 sí Vd = 0
En la figura 1 se muestra un amplificador idealizado. Es un dispositivo de acoplo directo con entrada diferencial, y un único terminal de salida. El amplificador sólo responde a la diferencia de tensión entre los dos terminales de entrada, no a su potencial común. Una señal positiva en la entrada inversora (-), produce una señal negativa a la salida, mientras que la misma señal en la entrada no inversora (+) produce una señal positiva en la salida. Con una tensión de entrada diferencial, Vd, la tensión de salida, Vo, será a Vd, donde a es la ganancia del amplificador. Ambos terminales de entrada del amplificador se utilizarán siempre independientemente de la aplicación. La señal de salida es de un sólo terminal y está referida a masa, por consiguiente, se utilizan tensiones de alimentación bipolares ( ± )
Teniendo en mente estas funciones de la entrada y salida, podemos definir ahora las propiedades del amplificador ideal. Son las siguientes:
1. La ganancia de tensión es infinita:
2. La resistencia de entrada es infinita:
3. La resistencia de salida es cero:
Ro = 0
4. El ancho de banda es infinito:
5. La tensión offset de entrada es cero:
V0 = 0 sí Vd = 0
A partir de estas características del AO, podemos deducir otras dos importantes propiedades adicionales. Puesto que, la ganancia en tensión es infinita, cualquier señal de salida que se desarrolle será el resultado de una señal de entrada infinitesimalmente pequeña.
Luego, en resumen:
A partir de estas características del AO, podemos deducir otras dos importantes propiedades adicionales. Puesto que, la ganancia en tensión es infinita, cualquier señal de salida que se desarrolle será el resultado de una señal de entrada infinitesimalmente pequeña. Luego, en resumen:
La tensión de entrada diferencial es nula.
También, si la resistencia de entrada es infinita. No existe flujo de corriente en ninguno de los terminales de entrada
Estas dos propiedades pueden considerarse como axiomas, y se emplearán repetidamente en el análisis y diseño del circuito del AO. Una vez entendidas estas propiedades, se pude, lógicamente, deducir el funcionamiento de casi todos los circuitos amplificadores operacionales.
Configuraciones básicas del amplificador operacional
Los amplificadores operacionales se pueden conectar según dos circuitos amplificadores básicos: las configuraciones (1) inversora y (2) no inversora. Casi todos los demás circuitos con amplificadores operacionales están basados, de alguna forma, en estas dos configuraciones básicas. Además, existen variaciones estrechamente relacionadas de estos dos circuitos, más otro circuito básico que es una combinación de los dos primeros: el amplificador diferencial.
  • El amplificador inversor
La figura 2 ilustra la primera configuración básica del AO. El amplificador inversor. En este circuito, la entrada (+) está a masa, y la señal se aplica a la entrada (-) a través de R1, con realimentación desde la salida a través de R2.
opfig2.gif (2997 bytes)
Fig. 2
Aplicando las propiedades anteriormente establecidas del AO ideal, las características distintivas de este circuito se pueden analizar como sigue.
Puesto que el amplificador tiene ganancia infinita, desarrollará su tensión de salida, V0, con tensión de entrada nula. Ya que, la entrada diferencial de A es:
Vd = Vp - Vn, ==> Vd = 0.- Y si Vd = 0,
entonces toda la tensión de entrada Vi, deberá aparecer en R1, obteniendo una corriente en R1
Vn está a un potencial cero, es un punto de tierra virtual
Toda la corriente I que circula por R1 pasará por R2, puesto que no se derivará ninguna corriente hacia la entrada del operacional (Impedancia infinita), así pues el producto de I por R2 será igual a - V0
por lo que:
luego la ganancia del amplificador inversor:
Deben observarse otras propiedades adicionales del amplificador inversor ideal. La ganancia se puede variar ajustando bien R1, o bien R2. Si R2 varía desde cero hasta infinito, la ganancia variará también desde cero hasta infinito, puesto que es directamente proporcional a R2. La impedancia de entrada es igual a R1, y Vi y R1 únicamente determinan la corriente I, por lo que la corriente que circula por R2 es siempre I, para cualquier valor de dicha R2.
La entra del amplificador, o el punto de conexión de la entrada y las señales de realimentación, es un nudo de tensión nula, independientemente de la corriente I. Luego, esta conexión es un punto de tierra virtual, un punto en el que siempre habrá el mismo potencial que en la entrada (+). Por tanto, este punto en el que se suman las señales de salida y entrada, se conoce también como nudo suma. Esta última característica conduce al tercer axioma básico de los amplificadores operacionales, el cual se aplica a la operación en bucle cerrado:
En bucle cerrado, la entrada (-) será regulada al potencial de entrada (+) o de referencia.
Esta propiedad puede aún ser o no ser obvia, a partir de la teoría de tensión de entrada de diferencial nula. Es, sin embargo, muy útil para entender el circuito del AO, ver la entrada (+) como un terminal de referencia, el cual controlará el nivel que ambas entradas asumen. Luego esta tensión puede ser masa (como en la figura 2), o cualquier potencial que se desee.
  • El amplificador no inversor
La segunda configuración básica del AO ideal es el amplificador no inversor, mostrado en la figura 3. Este circuito ilustra claramente la validez del axioma 3.
opfig3.gif (3650 bytes)
Fig. 3
En este circuito, la tensión Vi se aplica a la entrada (+), y una fracción de la señal de salida, Vo, se aplica a la entrada (-) a través del divisor de tensión R1 - R2. Puesto que, no fluye corriente de entrada en ningún terminal de entrada, y ya que Vd = 0, la tensión en R1 será igual a Vi
Así pues
 
y como
tendremos pues que:
que si lo expresamos en términos de ganancia:
que es la ecuación característica de ganancia para el amplificador no inversor ideal.
También se pueden deducir propiedades adicionales para esta configuración. El límite inferior de ganancia se produce cuando R2 = 0, lo que da lugar a una ganancia unidad.
En el amplificador inversor, la corriente a través de R1 siempre determina la corriente a través de R2, independientemente del valor de R2, esto también es cierto en el amplificador no inversor. Luego R2 puede utilizarse como un control de ganancia lineal, capaz de incrementar la ganancia desde el mínimo unidad hasta un máximo de infinito. La impedancia de entrada es infinita, puesto que se trata de un amplificador ideal.
Configuraciones basadas en los circuitos inversor y no inversor
El amplificador diferencial.-
Una tercera configuración del AO conocida como el amplificador diferencial, es una combinación de las dos configuraciones anteriores. Aunque está basado en los otros dos circuitos, el amplificador diferencial tiene características únicas. Este circuito, mostrado en la figura 4, tiene aplicadas señales en ambos terminales de entrada, y utiliza la amplificación diferencial natural del amplificador operacional.
opfig4.gif (3719 bytes)
Fig. 4
Para comprender el circuito, primero se estudiarán las dos señales de entrada por separado, y después combinadas. Como siempre Vd = 0 y la corriente de entrada en los terminales es cero.
Recordar que Vd = V(+) - V(-) ==> V(-) = V(+)
La tensión a la salida debida a V1 la llamaremos V01
y como V(-) = V(+)
La tensión de salida debida a V1 (suponiendo V2 = 0) valdrá:
Y la salida debida a V2 (suponiendo V1 = 0) será, usando la ecuación de la ganancia para el circuito inversor, V02
Y dado que, aplicando el teorema de la superposición la tensión de salida V0 = V01 + V02 y haciendo que R3 sea igual a R1 y R4 igual a R2tendremos que:
 
por lo que concluiremos
que expresando en términos de ganancia:
que es la ganancia de la etapa para señales en modo diferencial
Esta configuración es única porque puede rechazar una señal común a ambas entradas. Esto se debe a la propiedad de tensión de entrada diferencial nula, que se explica a continuación.
En el caso de que las señales V1 y V2 sean idénticas, el análisis es sencillo. V1 se dividirá entre R1 y R2, apareciendo una menor tensión V(+) en R2. Debido a la ganancia infinita del amplificador, y a la tensión de entrada diferencial cero, una tensión igual V(-) debe aparecer en el nudo suma (-). Puesto que la red de resistencias R3 y R4 es igual a la red R1 y R2, y se aplica la misma tensión a ambos terminales de entrada, se concluye que Vo debe estar a potencial nulo para que V(-) se mantenga igual a V(+); Vo estará al mismo potencial que R2, el cual, de hecho está a masa. Esta muy útil propiedad del amplificador diferencial, puede utilizarse para discriminar componentes de ruido en modo común no deseables, mientras que se amplifican las señales que aparecen de forma diferencial. Si se cumple la relación
La ganancia para señales en modo común es cero, puesto que, por definición, el amplificador no tiene ganancia cuando se aplican señales iguales a ambas entradas.
Las dos impedancias de entrada de la etapa son distintas. Para la entrada (+), la impedancia de entrada es R+ R2. La impedancia para la entrada (-) es R3. La impedancia de entrada diferencial (para una fuente flotante) es la impedancia entre las entradas, es decir, R1+R3.
El sumador inversor
Utilizando la característica de tierra virtual en el nudo suma (-) del amplificador inversor, se obtiene una útil modificación, el sumador inversor, figura 5.
opfig5.gif (3311 bytes)

Fig. 5

En este circuito, como en el amplificador inversor, la tensión V(+) está conectada a masa, por lo que la tensión V(-) estará a una masa virtual, y como la impedancia de entrada es infinita toda la corriente I1 circulará a través de RF y la llamaremos I2. Lo que ocurre en este caso es que la corriente I1 es la suma algebraica de las corrientes proporcionadas por V1, V2 y V3, es decir:
y también
Como I1 = I2 concluiremos que:
que establece que la tensión de salida es la suma algebraica invertida de las tensiones de entrada multiplicadas por un factor corrector, que el alumno puede observar que en el caso en que RF = RG1 = R G2 = R G3 ==> VOUT = - (V1 + V2 + V3)
La ganancia global del circuito la establece RF, la cual, en este sentido, se comporta como en el amplificador inversor básico. A las ganancias de los canales individuales se les aplica independientemente los factores de escala RG1, R G2, R G3,... étc. Del mismo modo, R G1, R G2 y R G3son las impedancias de entrada de los respectivos canales.
Otra característica interesante de esta configuración es el hecho de que la mezcla de señales lineales, en el nodo suma, no produce interacción entre las entradas, puesto que todas las fuentes de señal alimentan el punto de tierra virtual. El circuito puede acomodar cualquier número de entradas añadiendo resistencias de entrada adicionales en el nodo suma.
Aunque los circuitos precedentes se han descrito en términos de entrada y de resistencias de realimentación, las resistencias se pueden reemplazar por elementos complejos, y los axiomas de los amplificadores operacionales se mantendrán como verdaderos. Dos circuitos que demuestran esto, son dos nuevas modificaciones del amplificador inversor.
El integrador
Se ha visto que ambas configuraciones básicas del AO actúan para mantener constantemente la corriente de realimentación, IF igual a IIN.
opfig6.gif (2400 bytes)

Fig. 6

Una modificación del amplificador inversor, el integrador, mostrado en la figura 6, se aprovecha de esta característica. Se aplica una tensión de entrada VIN, a RG, lo que da lugar a una corriente IIN.
Como ocurría en el amplificador inversor, V(-) = 0, puesto que V(+) = 0, y por tener impedancia infinita toda la corriente de entrada Iin pasa hacia el condensador CF, llamaremos a esta corriente IF.
El elemento realimentador en el integrador es el condensador CF. Por consiguiente, la corriente constante IF, en CF da lugar a una rampa lineal de tensión. La tensión de salida es, por tanto, la integral de la corriente de entrada, que es forzada a cargar CF por el lazo de realimentación.
La variación de tensión en CF es
lo que hace que la salida varíe por unidad de tiempo según:
Como en otras configuraciones del amplificador inversor, la impedancia de entrada es simplemente RG
Obsérvese el siguiente diagrama de señales para este circuito
wpe2.jpg (8730 bytes)

Por supuesto la rampa dependerá de los valores de la señal de entrada, de la resistencia y del condensador.
El diferenciador
Una segunda modificación del amplificador inversor, que también aprovecha la corriente en un condensador es el diferenciador mostrado en lafigura 7.
opfig7.gif (2413 bytes)
Fig. 7
En este circuito, la posición de R y C están al revés que en el integrador, estando el elemento capacitativo en la red de entrada. Luego la corriente de entrada obtenida es proporcional a la tasa de variación de la tensión de entrada:
De nuevo diremos que la corriente de entrada IIN, circulará por RF, por lo que IF = IIN
Y puesto que VOUT= - IF RSustituyendo obtenemos
Obsérvese el siguiente diagrama de señales para este circuito
wpe4.jpg (9466 bytes)
El seguidor de tensión
Una modificación especial del amplificador no inversor es la etapa de ganancia unidad mostrada en la figura 8
opfig8.gif (2499 bytes)
En este circuito, la resistencia de entrada se ha incrementado hasta infinito, y RF es cero, y la realimentación es del 100%. V0 es entonces exactamente igual a Vi, dado que Es = 0. El circuito se conoce como "seguidor de emisor" puesto que la salida es una réplica en fase con ganancia unidad de la tensión de entrada. La impedancia de entrada de esta etapa es también infinita.
Resumen de las configuraciones básicas del amplificador y sus características.
Todas las características de los circuitos que se han descrito son importantes, puesto que, son las bases para la completa fundamentación de la tecnología de los circuitos amplificadores operacionales. Los cinco criterios básicos que describen al amplificador ideal son fundamentales, y a partir de estos se desarrollan los tres principales axiomas de la teoría de los amplificadores operacionales, los cuales repetimos aquí:
1.- La tensión de entrada diferencial es nula
2.- No existe flujo de corriente en ninguno de los terminales de entrada
3.- En bucle cerrado, la entrada (-) será regulada al potencial de entrada (+) o de referencia.
Estos tres axiomas se han ilustrado en todos los circuitos básicos y sus variaciones. En la configuración inversora, los conceptos de corriente de entrada nula, y tensión de entrada diferencial cero, dan origen a los conceptos de nudo suma y tierra virtual, donde la entrada inversora se mantiene por realimentación al mismo potencial que la entrada no inversora a masa. Usando el concepto de la entrada no inversora como terminal de referencia, el amplificador no inversor y el seguidor de emisor ilustran como una tensión de entrada es indirectamente multiplicada a través de una realimentación negativa en la entrada inversora, la cual es forzada a seguir con un potencial idéntico. La configuración diferencial combina estos conceptos, ilustrando el ideal de la simultaneidad de la amplificación diferencial y del rechazo de la señal en modo común. Las variaciones del inversor ponen de nuevo de manifiesto los principios básicos. En todos estos circuitos, hemos visto también cómo el funcionamiento está solamente determinado por los componentes conectados externamente al amplificador.
Hasta este momento, hemos definido el AO en sentido ideal y hemos examinado sus configuraciones básicas. Con una definición adicional, la simbología del dispositivo, llegaremos al mundo real de los dispositivos prácticos, examinaremos sus desviaciones respecto al ideal, y veremos cómo superarlas.
SIMBOLO ESQUEMATICO DEL AMPLIFICADOR OPERACIONAL ESTANDAR Y SU USO.
Una herramienta adicional básica del AO es su símbolo esquemático. Este es fundamental, dado que un esquema correctamente dibujado nos dice mucho sobre las funciones de un circuito. El símbolo más usado se muestra en la figura 9 con algunas aclaraciones anotadas.
wpeA.jpg (35296 bytes)
El símbolo básico es un triángulo, el cual generalmente presupone amplificación. Las entradas están en la base del triángulo, y la salida en el ápice. De acuerdo con el convenio normal del flujo de señal, el símbolo se dibuja con el ápice (salida) a la derecha, pero puede alterarse si es necesario para clarificar otros detalles del circuito.
Usualmente, las dos entradas se dibujan como se indica en la figura; la entrada no inversora (+) es la inferior de las dos. Excepciones a esta regla se producen en circunstancias especiales, en las que podría ser difícil mantener el convenio estándar. Además, las dos entradas están claramente identificadas por los símbolos (+) y (-), los cuales se sitúan adyacentes a sus respectivos terminales dentro del cuerpo del triángulo.
Como se ve, los terminales de las tensiones de alimentación se dibujan, preferiblemente, por encima y debajo del triángulo. Estos pueden no ser mostrados en todos los casos (en favor de la simplicidad) pero siempre están implícitos. Generalmente, en croquis, basta con usar el símbolo de tres terminales para dar a entender el significado, sobreentendiendo las conexiones de alimentación.
Finalmente, el tipo o número del dispositivo utilizado se sitúa centrado en el interior del triángulo. Si el circuito es uno general, indicativo de un amplificador operacional cualquiera, se usa el símbolo A ( o A1, A2, étc.)

No hay comentarios:

Publicar un comentario