sábado, 2 de abril de 2016

Epidemiología Molecular de Enfermedades Infecciosas

Microtubulos, microfilamentos y filamentos intermedios 

El  Citosqueleto  
 El citoequeleto es único a las células eucarióticas. Es una estructura tridimensional dinámica que llena el citoplasma. Esta estructura actúa como un músculo y como un esqueleto para el movimiento y la estabilidad. Las fibras largas del citoesqueleto son polímeros de subunidades. El tipo primario de fibras que componen el citoesqueleto son microfilamentos, microtubulos y filamentos intermedios
Microfilamentos  
Los microfilamentos  son finas fibras de proteínas como un hilo de 3-6 nm de diámetro. Están compuestos predominantemente de un tipo de proteína contráctil llamada actina, la cual es la proteína celular más abundante. La asociación de los microfilamentos con la proteína miosina es la responsable por la contracción muscular. Los microfilamentos también pueden llevar a cabo movimientos celulares, incluyendo desplazamiento, contracción y citocinesis. 
Microtubulos  
Los microtubulos son tubos cilíndricos de 20-25 nm en diámetro. Están compuestos de subunidades de la proteína tubulina, estas subunidades se llaman alfa y beta. Los microtubulos actúan como un andamio para determinar la forma celular, y proveen un conjunto de pistas para que se muevan las organelas y vesículas. Los microtubulos también forman las fibras del huso para separar los cromosomas durante la mitosis. Cuando se disponen en forma geométrica dentro de flagelos y cilias, son usados para la locomoción. 
Filamentos intermedios  
Los filamentos intermedios son cerca de 10 nm en diámetro y proveen fuerza de tensión a la célula. 
Ejemplos de citosqueletos en células epiteliales  
En las células epiteliales (piel) del intestino, los tres tipos de fibras están presentes. Los microfilamentos se proyectan dentro de las vellosidades, dando forma a la superficie celular. Los microtubulos crecen del centrosoma a la periferia de la célula. Los filamentos intermedios conectan células adyacentes a través de desmosomas. 






Los filamentos de actina constituyenuno de los componentes del citoesqueleto. En las células animales se encuentran normalmente localizadoscerca de la membrana plasmáticaformando un entramado cortical que sirve de soporte a la membrana plasmática. En las células de las plantas y en los hongos su distribución es distinta, puesto que la función de soporte la realiza la pared celular.
Los filamentos de actina se forman por la polimerización de una proteína denominadaactina, que puede aparece en dos variantes: alfa y beta actina. La beta actina es la más frecuente y aparece en la mayoría de las células animales. Su secuencia de aminoácidos difiere ligeramente de la alfa actina, la cual abunda en el músculo. La actina es una proteína citosólica muy abundante, aproximadamente el 10 % del total de las proteínas citosólicas. Una parte de las moléculas de actina se encuentra formando parte de los filamentos (F-actina) y el resto son proteínas no polimerizadas (G-actina), disueltas en el citosol. Estas proporciones varían según las necesidades celulares, es decir, el número y la longitud de los filamentos de actina cambia por polimerización y despolimerización. Sin la actina una célula no podría dividirse, moverse, realizar endocitosis ni fagocitosis.
Grandes avances en el conocimiento de la funcionalidad de la actina se han basado en la utilización que hacen de ella ciertos patógenos para llevar a cabo las infecciones celulares. La manipulación de estos patógenos y la obtención de mutantes ha ayudado a comprender muchos de los aspectos funcionales de los filamentos de actina.
 Actina

Esquema de la disposición de los filamentos de actina en una célula animal en cultivo. 
Estructura
Los filamentos de actina poseen unos 7 nm de diámetro. Es el valor más pequeño dentro de los filamentos que componen el citoesqueleto, por ello también se denominan microfilamentos. Poseen un extremo más y otro menos, es decir, son filamentos polarizados. Ello es consecuencia de la disposición ordenada de las moléculas de actina en el filamento, siempre se ensamblan con la misma orientación. El extremo más se denomina así porque en él predomina la polimerización, adición de nuevas moléculas de actina, respecto a la despolimerización, mientras que en el extremo menos predomina la despolimerización. El mecanismo de crecimiento y acortamiento de la longitud de los filamentos de actina es por polimerización y despolimerización, respectivamente, de monómeros de actina. En la célula se crean y se destruyen filamentos de actina continuamente. Es el componente del citoesqueleto más dinámico. Sin embargo, las condiciones y la concentración de actina en el citosol impiden que los monómeros se asocien espontáneamente para formar filamentos. Por ello, la formación de nuevos filamentos es posible gracias a la presencia de complejos proteicos, como los Arp2/3 o las forminas. Los primeros actúan como moldes para la formación de un nuevo filamento, mientras que las segundas estabilizan uniones espontáneas de proteínas de actina, favoreciendo la formación y elongación del microfilamento. Esto es tremendamente útil para la célula puesto que permite crear nuevos filamentos sólo allí donde se necesitan.
 Filamento de actina

Esquema de un filamento de actina donde se muestra como las moléculas de actina se disponen de forma helicoidal. Es una estructura polarizada donde las constantes de asociación y disociación de la actina son diferentes en los dos extremos (flechas verdes), aunque en ambos siempre es mayor la constante de asociación para la molécula de actina unida al ATP. Una vez polimerizada, se hidroliza el ATP de la molécula de actina liberando Pi y quedando por tanto el ADP unido a la molécula de actina (Modificado de Pollard y Earnshaw, 2007). 
Los filamentos de actina son más abundantes, más cortos y más flexibles que los microtúbulos, a los que veremos en el siguiente apartado. Una de sus grandes ventajas es la versatilidad con que se crean y se destruyen, así como por su capacidad de asociarse y formar estructuras tridimensionales muy diferentes. Esto es gracias a las denominadas proteínas moduladoras de la actina, de las cuales existen más de 100 diferentes. Afectan a la velocidad de creación y destrucción de filamentos, a la velocidad de polimerización, así como a la disposición tridimensional de los propios filamentos. De hecho, prácticamente no existen ni microfilamentos, ni proteínas de actina "desnudos" en el citosol, sino siempre unidos a alguna proteína moduladora.
Las proteínas moduladoras se pueden clasificar en diferentes tipos : a) Afectan a la polimerización. Algunas proteínas, como la profilina, se unen a las proteínas de actina libres y favorecen su unión a filamentos preexistentes, mientras otras, como la timosina, inhiben su unión, evitando la polimerización espontánea. b) Hay proteínas moduladoras, como las fimbrina y la α-actinina, que permiten la formación de haces de filamentos de actina mediante el establecimiento de puentes cruzados entre filamentos, mientras otras, como la filamina, permiten la formación de estructuras reticulares. c) Ciertas proteínas moduladoras, como la cofilina, la katanina o la gesolina, provocan la rotura y remodelación de los filamentos de actina; d) También hay proteínas que median en la interacción de los filamentos de actina con otras proteínas relacionadas, como es el caso de la tropomiosina, que media la interacción entre actina y miosina. e) Las proteínas de anclaje permiten la unión de los filamentos de actina a estructuras celulares como las membranas o a otros componentes del citoesqueleto.
Existen factores adicionales que condicionan la acción de estas proteínas moduladoras, como la variación en la concentración de calcio, proteínas como las Rho-GTPasas, la presencia de lípidos o la mayor o menor expresión génica de sus ARN mensajeros. También hay drogas que afectan a la polimerización de los filamentos de actina. Por ejemplo, las citocalasinas impiden la polimerización y las faloidinas impiden la despolimerización.
 Organización de actina

La polimerización y polimerización de los filamentos de actina se ven afectadas por numerosas proteínas denominadas moduladoras. En este esquema se muestran algunas de las disposiciones de los filamentos de actina en la célula, así como ejemplos de las moléculas moduladoras que los provocan (Modificado de Pollard y Earnshaw, 2007). 
Funciones.
Movimiento celular. Las células no nadan sino que se desplazan arrastrándose por el medio que las rodea, y ello se hace por un mecanismo de reptación, como ocurre en las células embrionarias durante el desarrollo, en el desplazamiento de las amebas, en la invasión de los linfocitos de los tejidos infectados o en los conos de crecimiento de los axones cuando buscan sus dianas. Se sabe que para el desplazamiento celular se necesitan una serie de pasos: extensión de protusiones citoplasmáticas hacia la dirección del movimiento, adhesión de éstas al sustrato y arrastre del resto de la célula mediante tracción hacia esos puntos de anclaje. A estas protusiones se les denomina lamelipodios cuando son de forma aplanada, filopodios cuando son finas y delgadas o lobopodios cuando son gruesas y cilíndricas. Cuando a las células en movimiento se las trata con citocalasinas, inhibidor de la polimerización de los filamentos de actina, las protusiones desaparecen y el desplazamiento se detiene, luego indica que la actina tiene un papel importante en su formación. De hecho es la polimerización de los filamentos de actina lo que empuja y forma estas protusiones. En la formación de los lamelipodios participa sobre todo los complejos Arp 2/3 como centros nucleadores de filamentos de actina. Cuando estas expansiones contactan con algún lugar del medio extracelular donde se pueden unir, matriz extracelular o la superficie de otras células, lo hacen gracias a proteínas de adhesión como las integrinas. Una vez anclada, la célula arrastra sus componentes intracelulares hacia el lugar de adhesión gracias a la actina y a proteínas motoras como la miosina.
Movimiento intracelular. Los orgánulos se mueven por el interior de la célula y ciertos cambios de la forma celular requieren reposicionamiento de su contenido interno. Los filamentos de actina participan en estos movimientos con ayuda de las proteínas motoras. Este papel es relevante en las células de las plantas, donde los filamentos de actina se encargan de la mayor parte del movimiento intracelular, mientras que en las células animales es llevado a cabo sobre todo por los microtúbulos, ayudados por los filamentos de actina. Las proteínas motoras que se asocian con al actina para producir movimiento son de la familia delas miosinas. La energía es aportada por el ATP. En las células se encuentran básicamente dos familias de miosinas: tipos I y II. Las moléculas de miosina I tienen una cabeza con la que se unen a los filamentos de actina y una cola para unir otros elementos, los cuales son arrastrados a lo largo del filamento de actina. Aparecen en la mayoría de las células y sirven para el desplazamiento de ciertos orgánulos o para deformar la propia superficie celular. La familia de la miosina II se encuentra fundamentalmente en el músculo, aunque también aparece en otras células. Tiene dos cabezas con actividad motora y capacidad de hidrólisis de ATP. Se suelen asociar en parejas, unidas a través de sus colas. Muchas moléculas se asocian para formar los filamentos de miosina II, los cuales tienen una polaridad como una flecha de doble cabeza. En el músculo estriado cada una de estas cabezas arrastra a filamentos de actina hacia el punto intermedio entre ellas, que se traduce en una contracción celular. En el músculo liso actúa otro mecanismo mediante el cual el calcio produce una fosforilación de la miosina II permitiéndole la interacción con la actina. Este proceso es mucho más lento porque se necesita que las proteínas quinasas lleguen a sus lugares de acción.
Vesículas
Formación y fusión de vesículas.
Endocitosis, fagocitosis. Los filamentos de actina se encuentran normalmente en los alrededores de la membrana plasmática, en la denominada corteza celular, aunque en menor proporción también aparecen en zonas más internas de la célula. Ésta es una disposición ideal para participar en procesos de endocitosis y fagocitosis. La formación y escisión de vesículas en la membrana plasmática no se realiza si se impide la polimerización de los filamentos de actina. La emisión de las expansiones celulares que engloban a las moléculas que van a ser fagocitadas dependen de la polimerización de de filamentos de actina.
Citocinesis. El estrangulamiento final del citoplasma durante el proceso de división celular se produce gracias a un anillo de actina, que, ayudado por la miosinas, va estrechando su diámetro progresivamente hasta la separación completa de los dos citoplasmas de las células hijas. En este estrangulamiento participa sobre todo la miosina II.
Establecen dominios de membrana. Los filamentos de actina también afectan a la movilidad lateral de las proteínas de membrana creando barreras a modo de cercas en la cara citosólica de la membrana plasmática que delimitan áreas. Esto impide largos desplazamientos laterales por difusión de las proteínas de la membrana.
Vesículas
Microvellosidades
Formación de microvellosidades. Las microvellosidades son expansiones filiformes estables que permiten a la célula aumentar enormemente la superficie de su membrana plasmática (en torno a un 30 %). Aparecen en muchos tipos celulares como las células epiteliales como las del tubo digestivo, las del tubo contorneado proximal del riñón, y otras muchas. Cada microvellosidad tiene de 1 a 2 µm de longitud y 0.1 µm de diámetro, y contiene en su interior varias docenas de filamentos de actina orientados paralelos al eje longitudinal. Estos filamentos están interconectados por proteínas como la miosina, fimbrina y vilina, por lo que se cree que tienen cierta capacidad de movimiento. Además, se encuentran unidos a la membrana celular por otras proteínas de enlace. En la base de las microvellosidades aparece un entramado llamado red terminal, formado fundamentalmente por actina, espectrina, miosina II y tropomiosina, el cual está conectado a la base de los haces de actina que forman las microvellosidades.


HAY DISTINTOS TIPOS de FILAMENTOS INTERMEDIOS
Los filamentos intermedios se clasifican de acuerdo a la proteína que los compone. Algunos de los tipos conocidos son:
  • Queratinas
  • Vimentina
  • Desmina
  • Proteína ácida fibrilar glial (GFAP)
  • Neurofilamentos
  • Láminas nucleares.
  • Nestina
Los filamentos intermedios como las queratinas se observan en el citoplasma próximos al núcleo (flechas en Figura izda.), otros como GFAP se localizan las prolongaciones celulares formando haces paralelos (derecha).
Solo un tipo, las láminas se encuentran en el núcleo.
LOS MICROTÚBULOS TIENEN FORMA DE TUBERÍA
Los microtúbulos están constituidos por dímeros de tubulina. Son unos polímeros que tienen forma cilíndrica y que están huecos, como una tubería .
Así es que la sección transversal del microtúbulo es circular (flechas rojas abajo izda.) y tubular cuando se cortan longitudinalmente (abajo dcha.)
Para que veas las diferencias de grosor entre los filamentos intermedios y los microtúbulos puede servir la fotografía inferior. Las flechas rojas marcan los microtúbulos de sección transversal, las flechas azules marcan neurofilamentos y su sección al microscopio óptico es la de un punto porque son más pequeños.
Los microtúbulos también forman parte de otras estructuras que aparece en las células como son los cilios (izda) y los centriolos de centrosoma (flechas rojas, dcha.) y cuyo tamaño puedes comparar con el aparato de Golgi (AG).
Al centrosoma se le conoce como el centro organizador de microtúbulos de la célula eucariota animal. Está formado por dos centriolos colocados perpendicularmente. El centriolo es un complejo de microtúbulos y otras proteínas

LOS MICROFILAMENTOS ESTÁN CONSTITUIDOS POR ACTINA.
Los microfilamentos son polímeros de la proteína actina que tienen forma filamentosa. Aparecen localizados en varias regiones del citoplasma. Por ejemplo, bajo la membrana plasmática o como se muestra en la fotografía de la derecha asociados a algunos tipos de uniones intercelulares.

La interacción entre la actina y otras moléculas -como la miosina- constituye la base molecular del proceso de contracción que tienen algunas células, como las musculares.

No hay comentarios:

Publicar un comentario