NEUROGLIA
Las células de sostén del SNC se agrupan bajo el nombre de neuroglia o células gliales. Son 5 a 10 veces más abundantes que las propias neuronas. Existen varios tipos de células gliales: Astrocitos, Oligodendrocitos, Microglia, glias radiales, células satélites, células de Schwann y células del epéndimo.
A pesar de ser consideradas básicamente células de sostén del tejido nervioso, existe una dependencia funcional muy importante entre neuronas y células gliales. De hecho, las neuroglias cumplen un rol fundamental durante el desarrollo del sistema nervioso, ya que ellas son el sustrato físico para la migración neuronal. También tienen una importante función trófica y metabólica activa, permitiendo la comunicación e integración de las redes neurales.
Cada neurona presenta un canon de recubrimiento glial complementario a sus interacciones con otras neuronas, de manera que sólo se rompe el entramado glial para dar paso a las sinapsis. De este modo, las células gliales parecen tener un rol fundamental en la comunicación neural.
Las células gliales son el origen más común de tumores cerebrales (gliomas).
Astrocitos: Son las neuroglias más grandes, su forma es estrellada, y existen dos tipos especializados: Astrocitos tipo I y tipo II. Se caracterizan por tener en su pericarion gran cantidad de haces de filamentos intermedios compuestos de proteína ácida fibrilar glial (PAFG) de 51 Kda. El uso de anticuerpos anti-PAFG permiten teñir específicamente a los astrocitos en cortes histológicos.
Los Astrocitos tipo I se encuentran principalmente en la sustancia gris del SNC. Tienen forma estrellada, citoplasma abundante, un núcleo grande y muchas prolongaciones muy ramificadas que suelen extenderse hasta las paredes de los vasos sanguíneos en forma de pedicelos. De esta manera, los astrocitos tipo I participan en la regulación de las uniones estrechas de las células endoteliales de los capilares y vénulas que conforman la barrera hematoencefálica. Los astrocitos más superficiales emiten prolongaciones con pedicelos hasta contactar con la piamadre encefálica y medular, lo que origina la membrana pial-glial.
Los Astrocitos tipo II emiten prolongaciones que toman contacto con la superficie axonal de los nodos de Ranvier de axones mielínicos, y suelen encapsular las sinapsis químicas. Por tal conformación, es posible que se encarguen de confinar los neurotransmisores a la hendidura sináptica y eliminen el exceso de neurotransmisor mediante pinocitosis.
Los astrocitos tienen importantes funciones en el SNC: 1) Forman parte de la barrera hematoencefálica que protege al SNC de cambios bruscos en la concentración de iones del líquido extracelular y de otras moléculas que pudiesen interferir en la función neural. Parecen influir en la generación de uniones estrechas entre las células endoteliales. 2) Eliminan el K+, glutamato y GABA del espacio extracelular. 3) Son importantes almacenes de glucógeno y su función es esencial debido a la incapacidad de las neuronas de almacenar moléculas energéticas; realizan glucogenólisis al ser inducidos por norepinefrina o VIP. 4) Conservan los neurotransmisores dentro de las hendiduras sinápticas y eliminan su exceso.
Oligodendrocitos: Su cuerpo celular es pequeño y el citoplasma es muy denso (son una de las células más electrón-densas del SNC); es rico en RER, polirribosomas libres, complejo de Golgi, mitocondrias y microtúbulos. El núcleo es esférico y contiene gran cantidad de heterocromatina, pero es más pequeño que el de los astrocitos. Presentan menor cantidad de prolongaciones y menos ramificadas que los astrocitos. En cultivos de oligodendrocitos se han observado pulsaciones rítmicas superficiales de función desconocida.
Los oligodendrocitos interfasciculares son las células responsables de la producción y mantenimiento de la mielina en los axones del SNC. Se disponen en columnas entre los axones de la sustancia blanca. Las prolongaciones tienen forma de lengua, y cada una de ellas se enrolla alrededor de un axón originando un segmento internodal de mielina. Por tanto, un oligodendrocito puede originar segmentos internodales de varios axones a la vez, a diferencia de las células de Schwann. Al igual que en el SNP, la vaina de mielina está interrumpida por los nodos de Ranvier. No es conocido el proceso por el cual la membrana plasmática de los oligodendrocitos se enrolla concéntricamente alrededor de los axones. A diferencia de como ocurre en la célula de Schwann, un oligodendrocito no puede moverse en espiral alrededor de cada axón que mieliniza; lo más probable es que las prolongaciones se enrollen alrededor de los axones cercanos hasta formar la vaina de mielina. En conclusión: 1) la mielina del SNC es producto del movimiento centrípeto de las prolongaciones oligodendríticas entre el axoplasma y la cara interna de la mielina en formación. 2) la mielina del SNP es producto del movimiento centrífugo de la célula de Schwann alrededor de la superficie externa de la mielina en formación.
El oligodendrocito no tiene lámina basal, por tanto, la unión de las vainas de mielina de dos axones adyacentes origina una línea intraperiódica común para ambos. Los nodos de Ranvier son más extensos que en el SNP, por lo tanto, es mayor el axoplasma expuesto.
Los oligodendrocitos satélites se encuentran en la sustancia gris y se asocian fuertemente a los somas, sin saber el tipo de unión ni la finalidad de ella.
Microglia: Están dispersas en todo el SNC, y se encuentran pequeñas cantidades en condiciones normales. Son células pequeñas y aún más oscuras que los oligodendrocitos; su núcleo es denso, escaso citoplasma y prolongaciones retorcidas de corto alcance con pequeñas espinas. En las zonas de lesión, las microglias se dividen, aumentan de tamaño y adquieren facultades fagocitarias: su función es eliminar las células dañadas y la mielina alterada. Se consideran parte del sistema fagocítico mononuclear.
Glias radiales. Son c�lulas que existen durante el desarrollo. Ellas guian a las neironas que se generan en el telencefalo para que migren a lo largo de caminos trazados por las glias radiales hacia la corteza cerebral.
Las células satélite son células cuboideas que rodean los cuerpos celulares de las neuronas de los ganglios posteriores de la médula espinal. En los ganglios paravertebrales y periféricos, las prolongaciones neuronales deben atravesar el entramado de células satélite para establecer sinapsis. Su función es formar y mantener un ambiente físico-químico controlado y apropiado (aislamiento eléctrico, correcto intercambio de metabolitos e iones) para las neuronas de los ganglios espinales y periféricos. Su origen común con las células de Schwann (crestas neurales) y sus funciones parecidas las hacen ser semejantes.
El epéndimo es una capa de células cuboideas o cilíndricas que reviste los ventrículos cerebrales y el canal central de la médula espinal. Sus características morfológicas y funcionales se relacionan con el transporte de fluidos. La capa neuroepitelial del cual se origina es ciliada en algunas regiones, y el epéndimo maduro también lo es. Su citoplasma presenta gran cantidad de mitocondrias en la zona apical y gruesos filamentos intermedios. Algunas células ependimarias presentan largas prolongaciones en su base, las cuales alcanzan la superficie cerebral en la etapa embrionaria, reduciéndose luego en la adultez. Estas prolongaciones forman la membrana limitante interna en la superficie ventricular, y la membrana limitante externa bajo la piamadre. En distintas localizaciones del encéfalo, las células ependimarias se modifican para formar el epitelio secretor de los plexos coroídeos. Los tanicitos son células ependimarias modificadas que envían prolongaciones hacia neuronas neurosecretoras y vasos sanguíneos del hipotálamo; se ha sugerido que los tanicitos transportan LCR a estas neuronas.
RESPUESTA NEURONAL FRENTE A LA LESION
El aplastamiento o sección de un axón provoca el inicio de un proceso degenerativo que se extiende proximalmente a la lesión (hacia el soma) por una corta distancia; al mismo tiempo comienza la reparación con la aparición de nuevos brotes axonales. Por otra parte, la porción distal del axón incluyendo su arborización terminal degenera completamente, y la vaina de mielina se fragmenta y reabsorbe; lo anterior es bastante lógico si se considera como centro trófico al pericarion. Este proceso se ha denominado degeneración walleriana (anterógrada) en honor a quien lo describió en 1852, Augustus Waller. Luego de uno o dos días, las mitocondrias se agrupan y se hinchan, se rompen los neurofilamentos y el axón adquiere aspecto arrosariado. La vaina de mielina se fragmenta hasta convertirse en pequeñas gotas de lípido que rodean al axón. Posteriormente, llegan los macrófagos para eliminar los detritus celulares y lipídicos. Durante la degeneración, las células de Schwann permanecen intactas, pero luego de unos instantes se hipertrofian, se dividen y se disponen en fila con sus extremos superpuestos hasta formar una especie de tubo que contiene en su interior restos axonales. El aumento de grosor de la pared del tubo causa una disminución de su luz hasta su desaparición, de manera que se origina una banda sólida denominada banda de Bunger. Simultáneamente, se forma una lámina basal adicional alrededor de las bandas, lo que crea varios compartimentos entre el endoneuro y las células de Schwann por donde pueden crecer los brotes axonales desde las porciones proximales a la lesión o desde axones adyacentes no lesionados. Durante la regeneración de los axones, las bandas de Bunger desaparecen paulatinamente y son englobadas por el endoneuro. La degeneración localizada que ocurre en la porción axonal proximal a la lesión permite la existencia de un proceso regenerativo. En el extremo proximal del axón aparecen pequeños conos de crecimiento (neuritas) que avanzan sobre la superficie externa de las bandas de Bunger, las cuales posteriormente comienzan a rodearlos. Estos brotes crecen entre 2 a 4 mm. por día, sin embargo, esto puede constituir un proceso bastante lento cuando las distancias son de un metro o más. La existencia de un considerable número de brotes y la guía que constituyen las columnas de células de Schwann permiten una correcta reinervación, mientras la funcionalidad se adquiere cuando se restablecen las conexiones sensitivas y motoras con los órganos efectores. Por ejemplo, el músculo se atrofia si está denervado, por tanto, la funcionalidad se adquiere tras un acondicionamiento muscular y el restablecimiento de las interacciones neuromusculares sensitivas y motoras. Las técnicas quirúrgicas que recomponen la unión de los extremos de un nervio y sus vasos sanguíneos seccionados (neurorrafia) han permitido satisfactoriamente la recuperación de miembros o dedos cercenados, con una buena recuperación de las funciones.
En el SNC, la degeneración walleriana es más lenta ya que el tejido cicatrizal derivado de células gliales en proliferación parece impedir la regeneración. Los esfuerzos científicos se han centrado actualmente en prevenir la formación de la cicatriz de tejido glial para facilitar la regeneración.
Uno o dos días después de la lesión axonal, se observa la pérdida de los cuerpos de Nissl en el soma y la aparición de muchos neurofilamentos, proceso que se denominacromatólisis retrógrada. La cromatólisis alcanza su desarrollo máximo dos semanas luego de la lesión y es mucho más evidente en las motoneuronas. Posteriormente, el pericarion se llena de agua y se hincha, lo que desplaza al núcleo hacia la periferia hasta el punto más alejado del cono axonal. A mayor pérdida de axoplasma, mayores serán las alteraciones del soma, de manera que lesiones axonales cercanas al cono axonal causan una cromatólisis que trae consigo la muerte celular. Cuando ocurre la regeneración axonal, la cromatólisis se detiene y comienza un proceso recuperativo a tal nivel que los cuerpos de Nissl pueden llegar a ser más abundantes que los preexistentes. El axoplasma perdido puede representar hasta 200 veces el volumen del cuerpo celular, y el esfuerzo metabólico para recuperarlo suele durar meses y es posible que la neurona muera en el intento.
En algunas enfermedades infecciosas y degenerativas del SNC se ha observado la desaparición de los cuerpos del Nissl desde la periferia hacia el centro del soma. Este proceso decromatólisis periférica no ocurre en neuronas con sección axonal sino que se presenta en fases avanzadas de degeneración neuronal.
PLASTICIDAD NEURONAL
La variedad de interacciones entre las neuronas y su extraordinaria complejidad permiten generar diversas respuestas adaptativas: esta propiedad se denomina plasticidad neuronal. En el SNC, existe la capacidad de generar nuevos brotes axónicos y nuevas conexiones sinápticas (remplazo sináptico), por ello, es posible crear nuevas interacciones neuronales. La plasticidad neuronal es máxima durante el desarrollo y desaparece en la adultez. En esta etapa, la plasticidad se manifiesta como aprendizaje o como respuesta a cambios internos o ambientales. En consecuencia, el cuerpo celular representa un elemento relativamente estable, sin embargo, es posible una modificación en las interrelaciones neuronales gracias al remplazo sináptico. Estos cambios significan a la vez, una modificación de la función neural, lo que invariablemente influye en las capacidades de integración del SNC tanto en sus funciones orgánicas como en la personalidad del individuo. Es factible que las células efectoras contribuyan a la plasticidad neuronal necesaria para reponerse de lesiones encefálicas mediante la liberación de factor de crecimiento neural (NGF).
TROFISMO
Durante el desarrollo del SNC, se generan más neuronas de las que existen en el adulto. De hecho, más de un 50% de las neuronas en desarrollo mueren antes de entrar en funcionamiento. Por ejemplo, más de la mitad de las motoneuronas inferiores que sinaptan con músculo esquelético mueren a las pocas horas después de establecida la unión. Esta muerte es resultado de una especie de competencia entre las neuronas por captar las cantidades limitadas de factor neurotrófico liberado por las células musculares, lo que ocasiona una muerte celular programada de las neuronas que no captan lo suficiente. Este es un medio eficaz para ajustar el número de neuronas al número de células efectoras que inervarán.
El agente neurotrófico más caracterizado es el factor de crecimiento neural o NGF (Nerve Growth Factor). Es un elemento esencial para las neuronas sensitivas y simpáticas ya que es un factor estabilizador de sus sinapsis y es capaz de estimular y conducir el crecimiento y regeneración de sus axones para así ajustar el suministro de inervación a las necesidades de las células blanco; en efecto, la administración de anticuerpos anti-NGF en un ratón con su SNC en desarrollo provocó la muerte a todas las neuronas simpáticas y sensitivas.
El NGF es producido por células inervadas por neuronas dependientes de NGF. Luego de ocurrida la muerte de las neuronas sobrantes, el NGF es importante en la mantención de la densidad de inervación ya que controla la cantidad de terminales axonales. El NGF alcanza las neuronas en las terminales axonales y avanza por transporte axonal retrógrado hacia el cuerpo celular para ejercer sus efectos.
Las neuronas del sistema nervioso central están sostenidas por algunas variedades de células no excitables que en conjunto se denominan neuroglia ( neuro = nervio; glia = pegamento). Las células en general son más pequeñas que las neuronas y las superan en 5 a 10 veces en número (50% del volumen del encéfalo y la médula espinal).
Hay cuatro tipos principales de células neurogliales, los astrocitos, los oligodendrocitos, la microglia y el epéndimo.
Astrocitos: Tienen cuerpos celulares pequeños con prolongaciones que se ramifican y extienden en todas direcciones. Existen dos tipos de astrocitos, los fibrosos y los protoplasmáticos. Los astrocitos fibrosos se encuentran principalmente en la sustancia blanca. Sus prolongaciones pasan entre las fibras nerviosas. Tienen prolongaciones largas, delgadas, lisas y no muy ramificadas. Contienen muchos filamentos en su citoplasma. Los astrocitos protoplasmáticos se encuentran en las sustancia gris, sus prolongaciones pasan también entre los cuerpos de las células nerviosas. Tienen prolongaciones más cortas, mas gruesas y ramificadas. El citoplasma contiene menos filamentos. Ambos, los fibrosos y los protoplasmáticos, proporcionan un marco de sostén, son aislantes eléctricos, limitan la diseminación de los neurotransmisores, captan iones de K+, almacenan glucógeno y tienen función fagocítica, ocupando el lugar de las neuronas muertas (gliosis de reemplazo).
Oligodendrocitos: Tienen cuerpos celulares pequeños y algunas prolongaciones delicadas, no hay filamentos en sus citoplasma. Se encuentran con frecuencia en hileras a lo largo de las fibras nerviosas o circundando los cuerpos de las células nerviosas. Las micrografías muestran que prolongaciones de un solo oligodendrocito se unen a las vainas de mielina de varias fibras. Sin embargo, sólo una prolongación se une a la mielina entre dos nodos de Ranvier adyacentes. Los oligodendrocitos son los responsables de la formación de la vaina de mielina de las fibras nerviosas del SNC. Se cree que influyen en el medio bioquímico de las neuronas.
Microglia: Son las células más pequeñas y se hallan dispersas en todo el SNC. En sus pequeños cuerpos celulares se originan prolongaciones ondulantes ramificadas que tienen numerosas proyecciones como espinas. Son inactivas en el SNC normal, proliferan en la enfermedad y son activamente fagocíticas (su citoplasma se llena con lípidos y restos celulares). Son acompañados por los monocitos de los vasos sanguíneos vecinos.
Epéndimo: Las células ependimales revisten las cavidades del encéfalo y el conducto central de la médula espinal. Forman una capa única de células cúbicas o cilíndricas que poseen microvellosidades y cilias. Las cilias son móviles y contribuyen al flujo de líquido cefaloraquídeo.
El cuadro siguiente proporciona un resumen de las características estructurales, la localización y las funciones de las diferentes células de la neuroglia.
Estructura
|
Estructura
|
Localización
|
Función
|
Astrocitos
Fibrosos
| Cuerpos celulares pequeños, prolongaciones largas y delgadas, filamentos citoplasmáticos, pies perivasculares. | Sustancia blanca | Proporcionan un marco de sostén, son aislantes eléctricos, limitan la diseminación de los neurotransmisores, captan iones de K+, almacenan glucógeno, tienen una función fagocítica, ocupan el lugar de las neuronas muertas, constituyen un conducto para los metabolitos o la materia prima, producen sustancias tróficas. |
Protoplasmáticos
| Cuerpos celulares pequeños, prolongaciones gruesas y cortas, muchas ramas, pies perivascualres. | Sustancia gris. | |
Oligodendrocitos
| Cuerpos celulares pequeños, pocas prolongaciones delicadas, sin filamentos citoplasmáticos. | En hileras a lo largo de los nervios mielínicos, rodeando los cuerpos de las células nerviosas. | Forman la mielina en el SNC, influyen en la bioquímica de las neuronas. |
Microglia
| Célula neuroglial más pequeña, ramas onduladas con espinas. | Dispersas por el SNC. | Son inactivos en el SNC normal, proliferan en la enfermedad y la fagocitosis, acompañados por monocitos sanguíneos. |
Epéndima
Ependimocitos
| De forma cuboidea o cilíndrica con cilios y microvellosidades, uniones en hendidura. | Revisten ventrículos, conducto central. | Circulan el LCR, absorven el LCR. |
Tanicitos
| Prolongaciones basales largas de con pies terminales sobre capilares. | Revisten el piso del tercer ventrículo. | Transporte sustancias desde el LCR hasta el sistema hipofisoportal. |
Células epiteliales coroideas
| Lados y bases que forman plieques, uniones estrechas. | Cubren las superficies de los plexos coroideos. | Producen y secretan LCR. |
Fibra nerviosa es el nombre que se le da al axón (o a una dendrita) de una célula nerviosa. Los haces de fibras nerviosas hallados en el SNC a veces se denominan tractos nerviosos, los haces de fibras nerviosas en el SNP se denominan nervios periféricos. En ambos hay dos tipos de fibras nerviosas las mielínicas y las amielínicas.
Una fibra nerviosa mielínica es aquella que está rodeada por una vaina de mielina. La vaina de mielina no forma parte de la neurona sino que está constituida por el tejido de sostén. En el SNC, la célula de sostén es el oligodendrocito; ene le SNP se denomina célula de Schwann.
La vaina de mielina es una capa segmentada discontinua interrumpida a intervalos regulares por los nodos de Ranvier (cada segmento de 0,5 mm a 1mm). En el SNC cada oligodendrocito puede formar y mantener vainas de mielina hasta para 60 fibras nerviosas (axones). En el sistema nervioso periférico sólo hay una célula de Schwann por cada segmento de fibra nerviosa. Las vainas de mielina comienzan a formarse antes del nacimiento y durante el primer año de vida.
En el SNP, la fibra nerviosa o el axón primero indenta el costado de una célula de Schwann. A medida que el axón se hunde más en la célula de Schwann, la membrana plasmática externa de la célula forma un mesoaxón que sostiene el axón dentro de la célula. Se cree que posteriormente la célula de Schwann rota sobre el axón de modo que la membrana plasmática queda envuelta alrededor del axón como un espiral. Al comienzo la envoltura es laxa, gradualmente el citoplasma entre las capas desaparece. La envoltura se vuelve más apretada con la maduración de las fibras nerviosas. El espesor de la mielina depende del número de espirales de la membrana de la célula de Schwann.
En el SNC los oligodendrocitos son responsables de formar la banda de mielina. La membrana plasmática del oligodendrocito se envuelve alrededor del axón y el número de capas determina el espesor de la vaina de mielina. Un solo oligodendrocito puede estar conectado con las vaina de mielina de hasta 60 fibras nerviosas, lo que implica que el oligodendrocito no rota como la célula de Schwann. Posiblemente la mielinización en el SNC se produzca por crecimiento en longitud de las prolongaciones del oligodendrocito.
En las fibras amielínicas, el potencial de acción se desplaza en forma continua a lo largo del axolema excitando progresivamente las áreas vecinas de la membrana.
En las fibras mielínicas, la presencia de la vaina sirve como aislante. En consecuencia una fibra nerviosa mielínica sólo puede ser estimulada en los nodos de Ranvier, donde el axón está desnudo y los iones pueden pasar libremente a través de la membrana plasmática. Debajo de la vaina de mielina sólo hay conducción pasiva (no hay conducción activa) entonces la conducción es más rápida. Para solucionar la pérdida de amplitud en los nodos de Ranvier hay membrana activa, el potencial recobra su amplitud y sigue viajando pasivamente hasta el próximo nodo. Estos saltos de potencial de acción de un nodo al siguiente se denominan conducción saltatoria. Este mecanismo es más rápido que el hallado en las fibras amielínicas (120 m/s en comparación con 0,5 m/s).
SISTEMA NERVIOSO
El sistema nervioso tiene tres funciones básicas: la sensitiva, la integradora y la motora. En primer lugar, siente determinados cambios, estímulos, tanto en el interior del organismo (el medio interno), por ejemplo la distensión gástrica o el aumento de acidez en la sangre, como fuera de él (el medio externo), por ejemplo una gota de lluvia que cae en la mano o el perfume de una rosa; esta es la función sensitiva. En segundo lugar la información sensitiva se analiza, se almacenan algunos aspectos de ésta y toma decisiones con respecto a la conducta a seguir; esta es la función integradora. Por último, puede responder a los estímulos iniciando contracciones musculares o secreciones glandulares; es la función motora.
Las dos primeras divisiones principales del sistema nervioso son el sistema nervioso son el sistema nervioso central (SNC) y el sistema nervioso periférico (SNP). El SNC está formado por el encéfalo y la médula espinal. En el se integra y relaciona la información sensitiva aferente, se generan los pensamientos y emociones y se forma y almacena la memoria. La mayoría de los impulsos nerviosos que estimulan la contracción muscular y las secreciones glandulares se originan en el SNC. El SNC está conectado con los receptores sensitivos, los músculos y las glándulas de las zonas periféricas del organismo a través del SNP. Este último está formado por los nervios craneales, que nacen en el encéfalo y los nervios raquídeos, que nacen en la médula espinal. Una parte de estos nervios lleva impulsos nerviosos hasta el SNC, mientras que otras partes transportan los impulsos que salen del SNC.
El componente aferente del SNP consisten en células nerviosas llamadas neuronas sensitivas o aferentes (ad = hacia; ferre = llevar). Conducen los impulsos nerviosos desde los receptores sensitivos de varias partes del organismo hasta el SNC y acaban en el interior de éste. El componente eferente consisten en células nerviosas llamadas neuronas motoras o eferentes ( ex = fuera de; ferre = llevar). Estas se originan en el interior del SNC y conducen los impulsos nerviosos desde éste a los músculos y las glándulas.
Según la parte del organismo que ejecute la respuesta, el SNP puede subdividirse en sistema nervioso somático (SNS) (soma = cuerpo) y sistema nervioso autónomo (SNA) (auto 0= propio; nomos = ley). El SNS está formado por neuronas sensitivas que llevan información desde los receptores cutáneos y los sentidos especiales, fundamentalmente de la cabeza, la superficie corporal y las extremidades, hasta el SNC que conducen impulsos sólo al sistema muscular esquelético. Como los impulsos motores pueden ser controlados conscientemente, esta porción del SNS es voluntario.
El SNA está formado por neuronas sensitivas que llevan información desde receptores situados fundamentalmente en las vísceras hasta el SNC, conducen los impulsos hasta el músculo liso, el músculo cardíaco y las glándulas. Con estas respuestas motoras no se encuentran normalmente bajo control consciente, el SNA es involuntario.
La porción motora del SNA tiene dos ramas, la división simpática y la parasimpática. Con pocas excepciones las vísceras reciben instrucciones de ambas. En general, estas dos divisiones tienen acciones opuestas. Los procesos favorecidos por las neuronas simpáticas suelen implicar un gasto de energía, mientras que los estímulos parasimpáticos restablecen y conservan la energía del organismo. ( Un ejemplo: mientras que el sistema nervioso simpático es el que es capaz de activar los mecanismos necesarios para acelerar los latidos cardíacos, es el sistema nervioso parasimpático el que es capaz de desacelerarlos.).
Neurona es el nombre que se da a la célula nerviosa y a todas sus prolongaciones. Son células excitables especializadas para la recepción de estímulos y la conducción del impulso nervioso. Su tamaño y forman varían considerablemente. Cada una posee un cuerpo celular desde cuya superficie se proyectan una o más prolongaciones denominadas neuritas. Las neuritas responsables de recibir información y conducirla hacia el cuerpo celular se denominan dendritas. La neurita larga única que conduce impulsos desde el cuerpo celular; se denomina axón. Las dendritas y axones a menudo se denominan fibras nerviosas. Las neuronas se hallan en el encéfalo, médula espinal y ganglios. Al contrario de las otras células del organismo, las neuronas normales en el individuo maduro no se dividen ni reproducen.
Esquema de una neurona. Micrografía electrónica de una neurona de la médula espinal.
Aunque el tamaño del cuerpo celular puede variar desde 5 mm hasta 135 mm de diámetro, las dendritas pueden extenderse hasta más de un metro (por ejemplo los axones de las neuritas que van desde la región lumbar de la médula hasta los dedos del pie). El número, la longitud y la forma de la ramificación de las neuritas brindan un método morfológico para clasificar a las neuronas.
Las neuronas unipolares tiene un cuerpo celular que tiene una sola neurita que se divide a corta distancia del cuerpo celular en dos ramas, una se dirige hacia alguna estructura periférica y otra ingresa al SNC. Las dos ramas de esta neurita tienen las características estructurales y funcionales de un axón. En este tipo de neuronas, las finas ramas terminales halladas en el extremo periférico del axón en el sitio receptor se denominan a menudo dendritas. Ejemplos de neuronas unipolares se hallan en el ganglio de la raíz posterior.
Las neurona bipolares poseen un cuerpo celular alargado y de cada uno de sus extremos parte una neurita única. Ejemplos de neuronas bipolares se hallan en los ganglios sensitivos coclear y vestibular.
Las neuronas multipolares tienen algunas neuritas que nacen del cuerpo celular. Con excepción de la prolongación larga, el axón, el resto de las neuritas son dendritas. La mayoría de las neuronas del encéfalo y de la médula espinal son de este tipo.
También pueden clasificarse de acuerdo al tamaño. Las neuronas de Golgi tipo I tienen un axón largo que puede llegar a un metro o más de longitud, por ejemplo largos trayectos de fibras del encéfalo y médula espinal y las fibras nerviosas de los nervios periféricas. Las células piramidales de la corteza cerebral, las células de Purkinje de la corteza cerebelosa y las células motoras de la célula espinal son ejemplos.
Las neuronas de Golgi tipo II tienen un axón corto que termina en la vecindad del cuerpo celular o que falta por completo. Superan en número ampliamente a las de tipo I. Las dendritas cortas que nacen de estas neuronas les dan aspecto estrellado. Ejemplos de este tipo de neuronas se hallan en la corteza cerebral y cerebelosa a menuda tienen una función de tipo inhibidora.
La clasificación anterior se resume a manera de cuadro:
Clasificación morfológica
|
Disposiciones de las Neuritas
|
Localización
|
Número, longitud
Modo de ramificación de las neuritas
| ||
Unipolar
|
La neurita única se divide a corta distancia del cuerpo celular.
|
Ganglio de la raíz posterior.
|
Bipolar
|
La neurita única nace de cualquiera de los extremos del cuerpo celular.
|
Retina, cóclea sensitiva y ganglios vestibulares.
|
Multipolar
|
Muchas dentritas y un axón largo.
|
Tractos de fibras del encéfalo y la médula espinal, nervios periféricos y células motoras de la médula espinal.
|
Tamaño de la neurona
| ||
De Golgi tipo I
|
Axón largo único.
|
Tractos de fibras del encéfalo y la médula espinal, nervios periféricos y células motoras de la médula espinal. Corteza cerebral y cerebelosa.
|
De Golgi tipo II
|
Axón corto que con las dentritas se asemeja a una estrella.
|
Corteza cerebral y cerebelosa.
|
El cuerpo de la célula nerviosa, como el de las otras células, que consiste esencialmente en una masa de citoplasma en el cual está incluido el núcleo; está limitado por su lado externo por una membrana plasmática. Es a menudo el volumen del citoplasma dentro del cuerpo de la célula es mucho menor que el volumen del citoplasma en las neuritas.
Núcleo: por lo común se encuentra en el centro del cuerpo celular. Es grande, redondeado pálido y contiene finos gránulos de cromatina muy dispersos. Por lo general las neuronas poseen un único núcleo que está relacionado con la síntesis de ácido ribononucleico RNA. El gran tamaño probablemente se deba a la alta tasa de síntesis proteica, necesario para mantener el nivel de proteínas en el gran volumen citoplasmático presente en las largas neuritas y el cuerpo celular.
Sustancia de Nissl: consiste en gránulos que se distribuyen en todo el citoplasma del cuerpo celular excepto en la región del axón. Las micrografías muestran que la sustancia de Nissl está compuesta por retículo endoplasmático rugoso dispuestos en forma de cisternas anchas apiladas unas sobre otras. Dado que los ribosomas contienen RNA, la sustancia de Nissl es basófila y puede verse muy bien con tinción azul de touluidina u otras anilinas básicas y microscopio óptico. Es responsable de la síntesis de proteínas, las cuales fluyen a lo largo de las dendritas y el axón y reemplazan a las proteínas que se destruyen durante la actividad celular. La fatiga o lesión neuronal ocasiona que la sustancia de Nissl se movilice y concentre en la periferia del citoplasma. Esto se conoce con el nombre de cromatólisis.
Aparato de Golgi: cuando se ve con microscopio óptico, después de una tinción de plata y osmio, aparece como una red de hebras ondulantes irregulares alrededor del núcleo. En micrografías electrónicas aparece como racimos de cisternas aplanadas y vesículas pequeñas formadas por retículos endoplasmáticos lisos. Las proteínas producidas por la sustancia de Nissl son transferidas al aparato de Golgi donde se almacenan transitoriamente y se le pueden agregar hidratos de carbono. Las macromoléculas pueden ser empaquetadas para su transporte hasta las terminaciones nerviosas. También se le cree activo en la producción de lisosomas y en la síntesis de las membranas celulares.
Mitocondrias: Dispersas en todo el cuerpo celular, las dendritas y el axón. Tienen forma de esfera o de bastón. En las micrografías electrónicas las paredes muestran doble membrana. La membrana interna exhibe pliegues o crestas que se proyectan hacia adentro de la mitocondria. Poseen muchas enzimas que toman parte en el ciclo de la respiración, por lo tanto son importantes para producir energía.
Neurofibrillas: Con microscopio óptico se observan numerosas fibrillas que corren paralelas entre si a través del cuerpo celular hacia las neuritas (tinción de plata). Con microscopio electrónico se ven como haces de microfilamentos de aproximadamente 7 mm de diámetro. Contienen actina y miosina y es probable que ayuden al transporte celular.
Microtúbulos: Se ven con microscopio electrónico y son similares a aquellos observados en otro tipo de células. Tienen unos 20 a 30 nm de diámetro y se hallan entremezclados con los microfilamentos. Se extienden por todo el cuerpo celular y sus prolongaciones. Se cree que la función de los microtúbulos es el transporte de sustancias desde el cuerpo celular hacia los extremos dístales de las prolongaciones celulares.
Lisosomas: Son vesículas limitadas por una membrana de alrededor de 8 nm de diámetro. Sirven a la célula actuando como limpiadores intracelulares y contienen enzimas hidrolíticas.
Centríolos: Son pequeñas estructuras pares que se hallan en las células inmaduras en proceso de división. También se hallan centríolos en las células maduras, en las cuáles se cree que intervienen en el mantenimiento de los microtúbulos.
Lipofusina: Se presenta como gránulos pardo amarillentos dentro del citoplasma. Se estima que se forman como resultado de la actividad lisosomal y representan un subproducto metabólico. Se acumula con la edad.
Melanina: Los gránulos de melanina se encuentran en el citoplasma de las células en ciertas partes del encéfalo, como por ejemplo la sustancia negra del encéfalo. Su presencia está relacionada con la capacidad para sintetizar catecolaminas por parte de aquellas neuronas cuyo neurotransmisor es la dopamina.
La membrana plasmática forma el límite externo continuo del cuerpo celular y sus prolongaciones y en la neurona es el sitio de iniciación y conducción del impulso nervioso. Su espesor es de aproximadamente 8nm lo cuál la hace demasiado delgada para poder ser observada por un microscopio óptico. Con microscopio electrónico se observa una campa interna y otra externa de moléculas dispuestas muy laxamente (cada capa aproximadamente de 2,5 nm) y separadas por una capa intermedia de lípidos. Moléculas de hidrato de carbono se encuentran adheridas al exterior de la capa plasmática y se unen con proteínas o lípidos formando lo que se conoce como cubierta celular o glucocálix.
La membrana plasmática y la cubierta celular juntas forman una membrana semipermeable que permite la difusión de ciertos iones a través de ella pero limita otras. En estado de reposo los iones de K+difunden a través de la membrana plasmática desde el citoplasma celular hacia el líquido tisular. La permeabilidad de la membrana a los iones de K+ es mucho mayor que el influjo de Na+. Esto da como resultado una diferencia de potencial estable de alrededor de -80 mv que pueden medirse a través de la membrana ya que el interior es negativo en relación al exterior. Este potencial se conoce como potencial de reposo.
Cuando una célula nerviosa es excitada (estimulada) por un medio eléctrico, mecánico o químico, ocurre un rápido cambio de permeabilidad de la membrana a los iones de Na+, estos iones difunden desde el liquido tisular a través de la membrana plasmática hacia el citoplasma celular. Esto induce a que la membrana se despolarise progresivamente. La súbita entrada de iones Na+ seguida por la polaridad alterada produce determinado potencial de acción que es de aproximadamente +40 mv. Este potencial es muy breve (5 nseg) ya que muy pronto la mayor permeabilidad de la membrana a los iones de Na+ cesa y aumenta la permeabilidad de los iones K+, de modo que estos comienzan a fluir desde el citoplasma celular y así el área localizada de la célula retorna al estado de reposo.
Una vez generado el potencial de acción se propaga por la membrana plasmática, alejándose del sitio de iniciación y es conducido a lo largo de las neuritas como el impulso nervioso. Una vez que el impulso nervioso se ha difundido por una región dad la membrana plasmática, no puede provocarse otro potencial en forma inmediata. La duración de este estado no excitable se denomina período refractario.
Así como en un cable se elige el mejor conductor, el cobre, análogamente el axón que está lleno de axoplasma, es un fluido conductor por sus iones positivos de potasio y moléculas de proteínas cargadas negativamente. La conducción pasiva ocurre en cualquier neurona piramidal del cerebro, cuando las dendritas hacen contacto con otra neurona. Las dendritas a diferencia del axón, no transmiten el potencial de acción, son simples membranas pasivas que pueden modelarse como redes RC.
Donde la Rint es la resistencia del medio externo, la Rint es la resistencia del medio interno, Rm es la resistencia de la mebrana y la Cm es la capacidad de la membrana.
Si bien la propagación es instantánea, la señal se atenúa rápidamente, aún en tramos cortos.
La conducción activa (modelo todo o nada) ocurre en un axón cualquiera, en donde un tramo de membrana se despolariza, activa los canales y genera un evento imparable.
En el gráfico a) el potencial del receptor sensitivo es -80 mv y en el b) es -61 mv. En tiempo cero el fluido interno de la neurona está a -90mv. El potencial aumenta hasta alcanzar el umbral crítico en -82 mv en el caso a) en 0.1 seg y en el caso b) en 0.02 seg. En ese momento la neurona "enciende" y su potencial interno rápidamente crece a +10 mv y cae también rápidamente a -90 mv nuevamente (spike).
Un estímulo que en vez de -80 mv sea -61 mv implica un cambio de frecuencia en el potencial de acción de 10 a 50 Hz. Lo mejor de este modo de conducción es que la amplitud no decae nunca, aunque es más lenta que la conducción pasiva.
El sistema nervioso consiste en un gran número de neuronas vinculadas entre sí para formar vías de conducción funcionales. Donde dos neuronas entran en proximidad y ocurre una comunicación interneuronal funcional ese sitio se llama sinapsis.
El tipo mas frecuente de sinapsis es el que se establece entre el axón de una neurona y la dendrita de otra (sinapsis axodendrítica). A medida que el axón se acerca puede tener una expansión terminal (botón terminal) o puede presentar una serie de expansiones (botones de pasaje) cada uno de los cuales hace contacto sináptico. Otro tipo de sinapsis es el que se establece entre el axón de una neurona y el cuerpo celular de otra neurona (sinapsis axosomática). Cuando un axón de una neurona hace contacto con el segmento inicia de otro axón, donde comienza la vaina de mielina, se conoce como sinapsis axoaxónicas.
No hay comentarios:
Publicar un comentario