viernes, 24 de febrero de 2017

Epónimos relacionados con las matemáticas

argumento ( o principio o teoremade Eckmann-Hilton es un argumento acerca de pares de estructuras de monoide sobre un conjunto donde uno es un homomorfismo para el otro. Dado esto, se puede mostrar que las estructuras coinciden, y el monoide resultante es, demostrablemente, conmutativo. Esto puede usarse para probar la conmutatividad de los grupos de homotopía superiores.

Presentación

Como será evidente después, es muy inconveniente postular la existencia de identidades en el tratamiento básico del argumento. Por tanto comenzamos con magmas, con el objetivo de apuntar a estructuras monoidales conmutativas.

Caso No Monoidal

Sea Mag la categoría de los magmas (i..e. operaciones binarias), consideramos las condiciones implicadas por la sola existencia de objetos magma lo que da lugar a Med la categoría medial.
(expresiones como "abeliano", "centrado", "afín", "medial", "dicotómico" o "preconvexo" son generalizaciones para objetos magma pero eliminamos las comillas) Ejemplo básico de medialidad pura : x T y = a(x) + b(y) + t en un semigrupo conmutativo (no necesariamente con elemento identidad) con a y b endomorfismos que conmutan entre sí y t un elemento fijo del semigrupo. En este ejemplo 0 T 0 = t si 0 es neutro del semigrupo.
Ejemplo básico de medialidad o abelianidad (viejo) (es decir un objeto auto-magma con una operación binaria T que satisface (x T y) T (u T z) = (x T u) T (y T z)) x T y = a(x) + b(y) + t puros en un semigrupo conmutativo (no necesariamente con identidad) con a y b endomorfismos que conmutan y t un elemento fijo en el semigrupo. Esto generaliza a los semigrupos conmutativos la noción de combinación lineal y afín.
Decimos que una operación medial está centrada si admite algún idempotente cancelativo bilátero (un centro).
Ahora, si tenemos una operación medial centrada (sea c un centro), definamos a(x) = x T c y b(y) = c T y, como la cancelatividad exige, tenemos contracciones d y e tales que d(a(x)) = x y e(b(y)) = ysi d y e son biyectivas, se puede definir x + y = d(x) T e(y), ésta es medial también, c es su identidad y reconstruye x T y = a(x) + b(y), por tanto un caso del ejemplo básico. Pero en Mag podemos extender un endomorfismo inyectivo, así que la extensión de b o a = a o b da una extensión a un ejemplo básico. Inversamente, asuma que el ejemplo básico es sobre un monoide conmutativo con x T y = a(x) + b(y), como a(0) = 0 = b(0) entonces 0 T 0 = 0 es decir idempotente y x T 0 = a(x), 0 T y = b(y).
Definiciones:
  • Una operación es afín si es medial e idempotente.
  • Una combinación lineal de números reales a.x + b.y se llama afín si y sólo si a + b = 1, pero esto, por supuesto, significa a.x + b.x = x para todo el x.
  • Decimos que una operación afín es central si todos los elementos son cancelativos biláteros.
  • Decimos que una operación afín es dicotómica si es conmutativa.
  • La única combinación afín de números reales que es conmutativa es x T y = ½x + ½y. Decimos que una operación dicotómica central es preconvexa.
Estas ideas se pueden utilizar para comenzar la caracterización de los números reales. (ver Escardó, Simpson sobre ½x + ½y y), lo que es más importante, soluciona el problema de la categoría métrica: los morfismos métricos son funciones cortas (o contracciones débiles o 1-Lipschitz); hasta ahora, todo bien. Pero para espacios de Banach esto da una contradictio in adjecto: ¡no hay espacios de Banach de funciones cortas lineales continuas, solamente bolas unitarias de Banach de funciones cortas lineales! Pero las bolas unidad no son aditivamente cerradas, sólo ½x + ½y cerrado (convexo). Pero hemos demostrado que la clausura no necesita ser monoidal, apenas medial en el sentido auto objeto magma, que es el sentido verdadero de Eckmann-Hilton. (0 no es una identidad para ½x + ½y, apenas un (tipo de) "centro"). Pero la extensión reconstructiva recién presentada es, exactamente, el espacio de Banach con su estructura monoidal.







axiomas de Peano o postulados de Peano son un sistema de axiomas aritméticos ideados por el matemático Giuseppe Peano en el siglo XIX, para definir los números naturales. Estos axiomas se han utilizado prácticamente sin cambios en diversas investigaciones matemáticas, incluyendo cuestiones acerca de la consistencia y completitud de la aritmética y la teoría de números.
Los publicó en 1889, en un folleto de unas treinta páginas, intitulado Aritmetices principia, nova methodo exposita, que se traduce por Nuevo método de exposición de los principios de la aritmética. Da una lista de nueve axiomas, de los cuales cuatro versan con el uso del signo = . Los demás se conocen como "Axiomas de Peano". Los matemáticos los consideran como la plataforma preliminar para forjar los siguientes conjuntos usuales de números. La idea pivotal de Peano fue la de "sucesor". 

Los axiomas

Los cinco axiomas o postulados de Peano son los siguientes:
  1. El 1 es un número natural. 1 está en N, el conjunto de los números naturales.
  2. Todo número natural n tiene un sucesor n* (este axioma es usado para definir posteriormente la suma).
  3. El 1 no es el sucesor de algún número natural.
  4. Si hay dos números naturales n y m con el mismo sucesor, entonces n y m son el mismo número natural.
  5. Si el 1 pertenece a un conjunto de números naturales, y dado un elemento cualquiera, el sucesor también pertenece al conjunto, entonces todos los números naturales pertenecen a ese conjunto. Este último axioma es el principio de inducción matemática.
Hay un debate sobre si considerar al 0 como número natural o no. Generalmente se decide en cada caso, dependiendo de si se necesita o no. Cuando se resuelve incluir al 0, entonces deben hacerse algunos ajustes menores:
  1. El 0 es un número natural.
  2. Si n es un número natural, entonces el sucesor de n también es un número natural.
  3. El 0 no es el sucesor de algún número natural.
  4. Si hay dos números naturales n y m con el mismo sucesor, entonces n y m son el mismo número natural.
  5. Si el 0 pertenece a un conjunto, y dado un número natural cualquiera, el sucesor de ese número también pertenece a ese conjunto, entonces todos los números naturales pertenecen a ese conjunto.

Presentación formal

Como se dijo antes existe un debate sobre si incluir al 0 entre los números naturales o no. A continuación se presentan los axiomas de Peano de manera formal, contemplando ambas posibilidades:

Cuando no interviene el cero

Los símbolos que designan los conceptos primitivos son .
El símbolo N designa un predicado monádico que se lee «ser un número natural». El símbolo 1, por su parte, designa una constante que pretende representar al número uno. Y el símbolo x', finalmente, designa una función sobre x que devuelve al sucesor de x. A esta función muchas veces se la escribe S(x). Finalmente, la metavariable  representa una fórmula cualquiera de la aritmética, y  representa una fórmula cualquiera que tenga a x como variable libre.
Los cinco axiomas de Peano son:
Del quinto axioma existen dos variantes. El primero está formulado en lógica de primer orden, y es en realidad un esquema de axioma. El segundo sí es un axioma, pero está formulado en lógica de segundo orden.
Además de los cinco axiomas, la aritmética de Peano recurre a dos definiciones (de la suma y de la multiplicación), que a veces se presentan como axiomas. A continuación se incluyen todas las variantes:
  • Definiciones de suma y multiplicación:
  • Axiomas de la suma y de la multiplicación:

Cuando interviene el cero

Los símbolos que designan los conceptos primitivos son .
Axiomas:
Cambiar los axiomas para que incluyan al 0 es sólo una cuestión de cambiar toda aparición del 1 por el 0. Sin embargo, en las definiciones (o los axiomas) de suma y de multiplicación hay que hacer algunos leves ajustes más:
  • Definiciones de suma y multiplicación:
  • Axiomas de la suma y de la multiplicación:

Modelos inintencionales

Un modelo es una interpretación de los símbolos primitivos que hace verdaderos a todos los axiomas. Por ejemplo, interpretando al símbolo 0 como el número cero, y al predicado N como los números naturales, el primer axioma resulta verdadero, porque es verdad que «el cero es un número natural». Lo mismo ocurre con todos los otros axiomas: bajo las interpretaciones naturales de 0, N y x', cada uno de los axiomas resulta verdadero. Luego, las interpretaciones naturales de los símbolos primitivos son un modelo de la aritmética de Peano.
Originalmente, Peano propuso los axiomas para caracterizar a los números naturales, y los símbolos primitivos se debían interpretar de esta manera natural. Sin embargo, los símbolos que designan a los conceptos primitivos admiten otras interpretaciones, algunas de las cuales serán además modelos. Por ejemplo, se podría interpretar al símbolo 0 como el número dos, a N como el predicado «ser un número par», y a x' como el sucesor del sucesor, en vez del sucesor inmediato. En tal caso, los axiomas se tendrían que entender así:
  1. El dos es un número par
  2. Si n es un número par, entonces el sucesor del sucesor de n también es un número par
  3. El dos no es el sucesor del sucesor de ningún número par.
  4. Si hay dos números pares n y m con el mismo sucesor de sucesor, entonces n y m son el mismo número par.
  5. Si el dos pertenece a un conjunto, y dado un número par cualquiera, el sucesor del sucesor de ese número también pertenece a ese conjunto, entonces todos los números pares pertenecen a ese conjunto.
Bajo esta interpretación, todos los axiomas resultan verdaderos, y los axiomas ya no definen a los números naturales, sino a los números pares. También es posible encontrar modelos (es decir, interpretaciones que hagan verdaderos a todos los axiomas) por fuera de la matemática. Por ejemplo, se podría interpretar a 0 como el primer segundo luego del Big Bang, a N como el predicado «ser un segundo», y a x' como el segundo después de x. Bajo esta interpretación (y asumiendo que el tiempo es infinito) los axiomas también resultan verdaderos.
A aquellos modelos que no fueron originalmente planeados se los llama modelos inintencionales (non-intended models), y existen infinitos modelos inintencionales de la aritmética de Peano. Estrictamente hablando, la aritmética de Peano no define el conjunto de los números naturales, sino a la noción más amplia de sucesión matemática o progresión aritmética de los naturales.

No hay comentarios:

Publicar un comentario