Ejemplos
- .
- .
- es una diferencia de expresiones trigonométricas.
Operaciones sobre binomios
Factor común
El resultado de multiplicar un binomio a+b con un monomio c se obtiene aplicando la propiedad distributiva del producto respecto de la adición:
o realizando la operación:
Esta operación tiene una interpretación geométrica ilustrada en la figura. El área del rectángulo es c(a+b) (el producto de la base por la altura), pero también puede obtenerse como la suma de las dos áreas coloreadas (ca y cb).
Ejemplo:
Suma por diferencia
El binomio puede factorizarse como el producto de dos binomios:
- .
Demostración:
Esta disposición suele llamarse diferencia de cuadrados, y es un caso especial de la fórmula: .
Producto de dos binomios lineales
El producto de un par de binomios lineales es:
- .
Potencia de un binomio
Un binomio elevado a la n-ésima potencia, se escribe:, y puede desarrollarse utilizando la fórmula de teorema de Newton o, equivalentemente, con ayuda del triángulo de Pascal. El ejemplo más sencillo es el cuadrado perfecto:
Cuadrado de un binomio
Al elevar un binomio al cuadrado, se lo multiplica por sí mismo:
.
La operación se efectúa del siguiente modo:
De aquí se puede derivar una regla para el cálculo directo: se suman los cuadrados de cada término con el doble producto de los mismos.
Cuando el segundo término es negativo:
Ejemplo:
Aplicación en el cálculo diferencial
Si se quiere hallar la derivada de la función cuadrática , se desarrolla el binomio . El coeficiente del término en que es es la derivada de . Obsérvese que si consideramos el trinomio del desarrollo como dependiente de , el término lineal es .
Igualmente, para se desarrolla . En el cuatrinomio resultante, el coeficiente de es , que es la derivada de .
Un binomio es un polinomio que consta de dos monomios.
P(x) = 2x2 + 3x
Binomio al cuadrado
Un binomio al cuadrado es igual es igual al cuadrado del primer término más, o menos, el doble producto del primero por el segundo más el cuadrado segundo.
(a + b)2 = a2 + 2 · a · b + b2
(x + 3)2 = x 2 + 2 · x ·3 + 3 2 = x 2 + 6 x + 9
(a − b)2 = a2 − 2 · a · b + b2
(2x - 3)2 = (2x)2 + 2 · 2x · 3 + 3 2 = 4x2 + 12 x + 9
Binomio al cubo
Un binomio al cubo es igual al cubo del primero más, o menos, el triple del cuadrado del primero por el segundo más el triple del primero por el cuadrado del segundo más, o menos, el cubo del segundo.
(a + b)3 = a3 + 3 · a2 · b + 3 · a · b2 + b3
(x + 3)3 = x 3 + 3 · x2 · 3 + 3 · x· 32 + 33 =
= x 3 + 9x2 + 27x + 27
(a − b)3 = a3 − 3 · a2 · b + 3 · a · b2 − b3
(2x - 3)3 = (2x)3 - 3 · (2x)2 ·3 + 3 · 2x· 32 - 33 =
= 8x 3 - 36 x2 + 54 x - 27
Diferencia de cuadrados
Una diferencia de cuadrados es igual a una suma por diferencia.
a2 − b2 = (a + b) · (a − b)
4x2 − 25 = (2x)2 − 52 = (2x + 5) · (2x - 5)
Suma de cubos
a3 + b3 = (a + b) · (a2 − ab + b2)
8x3 + 27 = (2x + 3) (4x2 - 6x + 9)
Diferencia de cubos
a3 − b3 = (a − b) · (a2 + ab + b2)
8x3 − 27 = (2x − 3) (4x2 + 6x + 9)
Producto de dos binomios que tienen un término común
(x + a) (x + b) = x2 + ( a + b) x + ab
(x + 2) (x + 3) =
= x2 + (2 + 3)x + 2 · 3 =
= x2 + 5x + 6
Binomio de Newton
La fórmula que nos permite hallar las potencias de un binomio se conoce como binomio de Newton.
Podemos observar que:
El número de términos es n+1.
Los coeficientes son números combinatorios que corresponden a la fila enésima del triángulo de Tartaglia.
En el desarrollo del binomio los exponentes de a van disminuyendo, de uno en uno, de n a cero; y los exponentes de b van aumentando, de uno en uno, de cero a n, de tal manera que la suma de los exponentes de a y de b en cada término es igual a n.
En el caso que uno de los términos del binomio sea negativo, se alternan los signos positivos y negativos.
Binomio de suma al cuadrado
Un binomio al cuadrado (suma) es igual es igual al cuadrado del primer término, más el doble producto del primero por el segundo más el cuadrado segundo.
(a + b)2 = a2 + 2 · a · b + b2
(x + 3)2 = x 2 + 2 · x ·3 + 3 2 = x 2 + 6 x + 9
Binomio de resta al cuadrado
Un binomio al cuadrado (resta) es igual es igual al cuadrado del primer término, menos el doble producto del primero por el segundo, más el cuadrado segundo.
(a − b)2 = a2 − 2 · a · b + b2
(2x − 3)2 = (2x)2 − 2 · 2x · 3 + 3 2 = 4x2 − 12 x + 9
El desarrollo de un un binomio al cuadrado se llama trinomio cuadrado perfecto.
a2 + 2 a b + b2 = (a + b)2
a2 − 2 a b + b2 = (a − b)2
No hay comentarios:
Publicar un comentario