miércoles, 27 de abril de 2016

Neuroanatomía

la médula espinal
ESTRUCTURA INTERNA DE LA MEDULA ESPINAL
En un corte transversal se observa que la médula espinal consta de una región central con forma de H llamada sustancia gris, y una región periférica de aspecto blanquecino denominada sustancia blanca. Las prolongaciones posteriores relativamente delgadas que casi alcanzan el surco lateral posterior se denominan astas posteriores;Fig 13. las prolongaciones anteriores anchas y redondeadas se denominan astas anteriores. La disposición tridimensional de las astas anteriores y posteriores conforman verdaderas columnas que recorren la médula espinal para constituir las columnas grises anterior y posterior. Las astas posteriores, funcionalmente somatosensitivas, están formada por neuronas sensitivas que reciben los impulsos que llegan por las raíces posteriores. Las astas anteriores, funcionalmente somatomotoras, están constituidas por neuronas motoras cuyos axones salen por las raíces anteriores. En los segmentos torácicos y lumbares superiores existe una pequeña asta lateral Fig 2 que emerge de la unión del asta anterior con la posterior y contiene neuronas viscerales simpáticas. En la parte lateral de la base del asta posterior de los segmentos cervicales superiores es difícil distinguir el límite entre la sustancia gris de la blanca debido a que células y fibras nerviosas se encuentran mezcladas: es la formación reticular que se continúa superiormente como la formación reticular del tronco encefálico.
Las columnas grises anterior y posterior de cada lado se encuentran unidas por una banda transversal de sustancia gris: la comisura gris. Justo en medio de la comisura gris se encuentra un pequeño conducto lleno de LCR que recorre completamente a la médula espinal: el canal central Fig 16 de la médula espinal. Este conducto suele ser apenas visible o permanecer ocluido con el epitelio cilíndrico ciliado que lo recubre (epéndimo). Superiormente, se continúa con el canal central de la mitad caudal del bulbo raquídeo para luego abrirse paso a la cavidad del cuarto ventrículo. En el extremo inferior de la médula espinal puede formar una dilatación (ventrículo terminal). El canal central sirve de referencia para dividir la comisura gris en dos mitades en sentido anteroposterior: la comisura gris anterior y la comisura gris posterior.Fig 16. Entre la comisura gris anterior y la fisura mediana anterior existe una banda transversal de sustancia blanca que comunica ambos cordones anteriores, la comisura blanca anterior. Los cordones posteriores están totalmente separados por el tabique mediano posterior que va desde el surco mediano posterior hasta la comisura gris posterior.
La cantidad de sustancia gris presente en los diferentes niveles medulares depende de la cantidad de músculos inervados por ese nivel. Por tal motivo, en los segmentos torácicos las astas son delgadas y pequeñas, mientras que en los segmentos cervicales inferiores y lumbosacros las astas son gruesas ya que contienen las neuronas motoras y sensitivas asociadas a los plexos braquial y lumbosacro. En los vértices de las astas posteriores de estos últimos segmentos es posible observar un área de sustancia gris de apariencia gelatinosa denominada sustancia gelatinosa,Fig 1. que también está presente en segmentos torácicos pero menos aparente debido a su escasez.

Estructura de la Sustancia Gris
La sustancia gris de la médula espinal está formada por un conjunto de somas neuronales multipolares y células de neuroglia . Las neuroglias se encargan de formar una intrincada red que nutre y soporta a las células nerviosas. Existe un número considerable de agrupaciones celulares muy bien definidas:

(1) NUCLEOS DE LAS ASTAS ANTERIORESLa mayoría de las neuronas de las columnas grises anteriores son multipolares, con grandes prolongaciones y abundantes cuerpos de Nissl. Sus axones eferentes alfa forman las raíces anteriores de los nervios espinales e inervan los músculos estriados. Por otra parte, los axones eferentes gamma son las prolongaciones de las neuronas multipolares más pequeñas del asta anterior e inervan las fibras intrafusales de los husos musculares.
Los grupos celulares más mediales de la columna gris anterior inervan la musculatura axial, mientras que los grupos laterales inervan las extremidades; esto explica la prominencia en la parte lateral del asta anterior en los segmentos que originan los plexos braquial y lumbosacro. Los grupos celulares que inervan la musculatura proximal de las extremidades se disponen medialmente, mientras los que inervan la musculatura distal están lateralmente. Esta es la razón que explica la existencia de lesiones que producen parálisis de un grupo muscular sin afectar a otro.Fig 26
Existen descripciones citoarquitectónicas que nombran una infinidad de grupos columnares, pero ciertamente esto no es de validez ante una aproximación clínica. Es más práctico dividir la columna gris anterior en tres grupos: lateral, central y medial. (a) el grupo lateral está presente en los segmentos medulares cervicales y lumbosacros e inerva la musculatura de las extremidades superiores e inferiores. (b) el grupo central es el más pequeño y se encuentra en algunos segmentos cervicales y en los lumbosacros. En los segmentos medulares C3, C4 y C5 se encuentra el núcleo frénico que da la inervación del diafragma. En los cinco o seis segmentos cervicales superiores se forma el núcleo accesorio, el cual proporciona la inervación a los músculos esternocleidomastoideo y trapecio. Los axones de las neuronas que forman el núcleo accesorio originan la raíz espinal del nervio accesorio (XI). Entre los segmentos L2 y primeros sacros se encuentra el núcleo lumbosacro, cuyos axones tienen una distribución aún no conocida. (c) el grupo medialestá presente en la mayoría de los segmentos medulares. Sus prolongaciones inervan los músculos del cuello y tronco, incluyendo los músculos intercostales y abdominales.

(2) NUCLEOS DE LAS ASTAS POSTERIORES: (a) la sustancia gelatinosa está formada de pequeñas neuronas Golgi tipo II distribuidas en una red neuroglial. Recibe estímulos exteroceptivos que vienen por las raíces posteriores, entre ellos, de dolor y temperatura (estímulos termalgésicos). Se ubica en los vértices de las astas posteriores a lo largo de la médula espinal, constituyendo un componente notable en C1 y C2 que se denomina núcleo espinal del trigémino. Este núcleo recibe impulsos de los nervios oftalmico, maxilar y mandibular del nervio trigémino. (b) anteriormente a la sustancia gelatinosa se ubica un importante grupo neuronal: el núcleo propio. Este núcleo recibe estímulos propioceptivos a través de fibras provenientes del cordón posterior (sensaciones de posición, movimiento, discriminación espacial y vibración). (c) en el centro del asta posterior se ubican algunas interneuronas y unas pequeñas neuronas receptoras de estímulos exteroceptivos. (d) en la porción medial de la base del asta posterior desde el segmento medular C8 hasta L3 o L4 se encuentra el núcleo torácico, también denominado nucleus dorsalis o Columna de Clark. Este núcleo recibe estímulos propioceptivos desde los husos musculares y tendinosos. (e) los núcleos viscerales aferentes están formados por pequeñas neuronas que se encuentran ubicadas lateralmente al núcleo torácico. Están presentes desde los segmentos torácicos hasta el segmento L3 conformando el asta lateral de la médula espinal. Se relacionan con la recepción de información visceral aferente que llega por las raíces posteriores. Desde estos núcleos salen axones que acompañan a las fibras de las neuronas somatomotoras que constituyen la raíz anterior de la médula espinal.

Láminas de la sustancia gris
Basándose en la anatomía microscópica de la médula espinal, la sustancia gris se ha dividido en una serie de 10 láminas, denominadas láminas de Rexed. El asta posterior incluye las láminas I a VI, la zona intermedia corresponde a la lámina VII, y el asta anterior está constituida por las láminas VIII, IX y X. Cada lámina se relaciona con determinadas estructuras; por ejemplo, la sustancia gelatinosa se encuentra en la lámina II, el núcleo torácico se encuentra en la lámina VII, etc.

Estructura de la Sustancia Blanca
La sustancia blanca de la médula espinal está compuesta por una gran cantidad de fibras nerviosas, neuroglias y vasos sanguíneos. En un corte transversal se observa su disposición alrededor de la sustancia gris. Su color se debe a la presencia de una gran proporción de fibras mielínicas que corren longitudinalmente, aunque también existe cierta cantidad de fibras amielínicas. Las fibras nerviosas de la sustancia blanca se encargan de unir los segmentos medulares entre sí, y la médula espinal con el encéfalo. Aunque algunos tractos de la médula espinal se concentran en lugares específicos, se ha demostrado la existencia de áreas superpuestas.
Las fibras de las raíces posteriores que llegan hasta el asta posterior presentan diferentes morfologías según el estímulo que ellas transmitan. Las fibras que transmiten aferencias exteroceptivas son de pequeño calibre y poco mielínicas, mientras que las que llevan impulsos propioceptivos son más gruesas y mielinizadas. Las neuronas que sinaptan con la sustancia gelatinosa son amielínicas. Las fibras de la raíz posteriorpueden tomar contacto con las neuronas del asta anterior directamente o a través de interneuronas cuyos somas se encuentran en el asta posterior. Los axones de las interneuronas cruzan por la comisura blanca anterior y por la comisura gris para sinaptar con las motoneuronas del lado opuesto (base de los reflejos segmentarios cruzados)
En la médula espinal existen tres niveles fundamentales de organización: se reconoce una organización segmentariaFig 31. base de las actividades reflejas segmentarias representadas en el arco reflejo patelar, una intersegmentaria que explica los reflejos intersegmentarios como el reflejo de retirada a un istímulo doloroso. y unasuprasegmentaria por la cual las actividades medulares son coordinadas por los centros encefálicos.
 
Foto 2

Foto 13

Foto 16

Foto 1



Reflejos Medulares 
El reflejo es la unidad fisiológica del sistema nervioso. Se define como una respuesta motriz de tipo involuntaria que ocurre inmediatamente después de aplicar un estímulo en particular, y que puede ser o no consciente. Si la respuesta no es inmediata no puede ser considerada un reflejo. Otra característica de la respuesta refleja es que parece presentarse y ejecutarse con un fin determinado, y la respuesta se coordina y adapta en vista de tal fin. Su base anatómica es el arco reflejo, cuyos componentes básicos son: (1) un órgano receptor (2) una neurona aferente (3) una neurona eferente (4) un órgano efector. Como este arco reflejo sólo involucra una sinapsis, se denomina arco reflejo monosináptico; por ello, el tiempo entre la aplicación del estímulo y la ejecución del reflejo es muy pequeño (período latente breve), como sucede en los reflejos patelar y corneal. Los arcos reflejos cumplen importantes funciones, entre ellas, la mantención del tono muscular y, por ende, la postura corporal. De hecho, el movimiento puede considerarse como una expresión motora de un conjunto de respuestas reflejas influenciadas por el encéfalo. 
Los reflejos tienen una localización perfecta y estricta, o sea, originan siempre una respuesta que ocurre siempre en el mismo sitio. Se ha demostrado que luego de la descarga normal de la neurona eferente sobre el órgano efector viene un período prolongado de descarga asincrónica. Este suceso se explica por la presencia de colaterales del axón de la neurona aferente que hacen el papel de interneuronas y vuelven a sinaptar con la neurona eferente, produciendo una descarga prolongada luego del impulso inicial. Luego de ocurrido el reflejo, viene un período refractario en el cual no es posible una respuesta refleja ante un estímulo. Los centros reflejos son muy susceptibles a la hipoxia y a ciertos fármacos, y es por ello que la ausencia o cualquier alteración de la actividad refleja juega un papel preponderante en el diagnóstico clínico. 
Existen dos propiedades de los reflejos medulares que deben considerarse: (1) la ley de la inervación recíproca indica que los reflejos extensor y flexor de un mismo miembro no pueden realizarse simultáneamente. Se sabe que la neurona aferente que llega al músculo flexor envía colaterales al músculo extensor para inhibirlo (2) el reflejo de extensión cruzado: Al provocar el reflejo de flexión en el miembro inferior de un lado, el miembro del otro lado se hiperextiende.  Si se estimula alternativamente la planta de un pie y del otro se produce un movimiento de pedaleo. Estas respuestas también han sido observadas en el miembro superior, pero son menos frecuentes. 
Los reflejos segmentarios son fuertemente influenciados por centros neuronales superiores a través de los tractos descendentes largos. Así, la sección transversal de la médula espinal involucra la pérdida de estas influencias y causa un estado de depresión funcional de toda la región corporal que depende de los segmentos medulares bajo la sección. Esta respuesta se caracteriza por una parálisis flácida, gran vasodilatación e hipotensión arterial, incontinencia urinaria y fecal y ausencia de reflejos (arreflexia). Esta etapa transitoria de shock espinal evoluciona hacia una rigidez de decerebración, caracterizada por la aparición de los reflejos segmentarios y aumento del tono muscular debido a una hiperactividad de las fibras eferentes gamma sobre los husos musculares, descontroladas porque no tienen control de los centros superiores (automatismo medular). Se admite corrientemente que la acción de la corteza motora y la vía piramidal inhiben el tono muscular. Es por ello que en la rigidez de decerebración por lesión de la vía corticoespinal se observa una marcada hipertonía. Algunos investigadores afirman que en realidad la corteza motora es una gran potencializadora del tono muscular y que es el área premotora (porción anterior al giro precentral) la que genera los impulsos inhibitorios. La lesión de las vías piramidales y la corteza motora no produce hipertonía si no se lesiona al mismo tiempo el área premotora o las vías extrapiramidales. De este modo, se ha llegado a la conclusión de que la hipertonía es en realidad extrapiramidal y no piramidal. 
Un corte incompleto de la médula espinal que involucre todos los tractos excepto el vestibuloespinal, produce un dominio marcado del incremento del tono en los músculos extensores más que en los flexores (paraplejía en extensión). La sección de todos los tractos produce una flexión como respuesta a reflejos y una disminución del tono de los músculos extensores (paraplejía en flexión).

Cuando las motoneuronas inferiores van atravesando la sustancia blanca camino a formar las raíces anteriores de los nervios espinales, emiten colaterales que hacen sinapsis con unas neuronas colinérgicas denominadas células de Renshaw. Estas interneuronas vuelven a hacer sinapsis con motoneuronas inferiores cercanas, formando un circuito reverberante que inhibe la actividad de estas últimas. Por ello, la estimulación de cada motoneurona tiende a inhibir las neuronas motoras circundantes. Este sistema de inhibición recurrente muestra que el sistema motor hace uso del principio de la inhibición lateral para permitir la transmisión de la señal primaria sin que disminuya su intensidad, al mismo tiempo que suprime la tendencia a diseminarse por las neuronas adyacentes.
Las fibras de las raíces posteriores no sólo terminan en su segmento medular. Una considerable parte de ellas se bifurcan al penetrar a la médula y se dividen en ramas ascendentes y descendentes que emiten colaterales hacia el asta posterior hasta que ellas mismas terminan en la sustancia gris de segmentos superiores o inferiores. Muchas ramas descendentes se agrupan formando tractos que corren en la columna blanca posterior y establecen conexiones intersegmentarias. Las interneuronas del asta posterior extienden sus axones a la sustancia blanca cerca de la sustancia gris, constituyendo los fascículos propios. Su interrupción produce trastornos en los reflejos intersegmentarios. Son muy importantes en funciones reguladoras automáticas medulares como los que controlan la micción en segmentos lumbosacros o los que intervienen en el control sinérgico de los músculos respiratorios en la porción superior de la médula espinal.
La organización suprasegmentaria comprende los tractos ascendentes largos que llevan impulsos aferentes a centros encefálicos, y los tractos descendentes largos por los cuales estos centros neuronales superiores influyen en las motoneuronas inferiores.

TRACTOS ASCENDENTES LARGOS
Los tractos ascendentes son paquetes de fibras nerviosas sensitivas de diferentes tipos y funciones que transcurren por la sustancia blanca de la médula espinal, estableciendo comunicación entre segmentos medulares o con centros neuronales superiores. Se encargan de conducir información sensitiva que puede ser o no consciente.
La base anatómica de una vía ascendente que trae información desde los receptores periféricos consta de tres neuronas. La neurona de primer orden tiene su soma en un ganglio de la raíz posterior; desde allí, la prolongación periférica (la dendrita) hace contacto con el receptor periférico y la prolongación central (el axón) penetra a la médula espinal formando parte de la raíz posterior hasta sinaptar con la neurona de segundo orden. El axón de esta neurona puede decusarse o seguir ipsilateralmente hasta un centro superior del SNC. En este centro, que es el tálamo, se encuentra la neurona de tercer orden cuyo axón llega hasta el área sensitiva de la corteza cerebral.Fig 22 . Debe considerar que esta es sólo una descripción general de los tractos ascendentes que no estipula los accidentes anatómicos específicos de cada tracto. Por ejemplo, hay vías que involucran más o menos de tres neuronas, u otras que no llegan a las áreas corticales sensitivas.
La información sensitiva que llevan estos tractos puede ser clasificada en: (1) Propiocepción: respuesta a estímulos internos relacionados con el control consciente e inconsciente de la postura corporal y tono muscular. (2) Exterocepción: respuestas a estímulos ambientales como dolor, temperatura o tacto. (3) Interocepción: respuesta a estímulos que se originan en el territorio visceral.

PROPIOCEPCION
La propiocepción se produce por estimulación de los diversos receptores ubicados en los músculos, tendones y articulaciones (husos musculares y órganos tendinosos de Golgi). Estos impulsos se transmiten por fibras Ia y Ib y es principalmente propioceptiva consciente, aunque también existen aferencias exteroceptivas de tacto discriminativo. Los impulsos aferentes que van al cerebelo para la coordinación inconsciente suben por los tractos espinocerebelosos (cordón lateral de la sustancia blanca). Los que van a la corteza cerebral intervienen en el control cortical de los movimientos y originan impresiones conscientes. Estos ascienden por el cordón posterior de la médula espinal (fascículos gracilis y cuneatus).
Tractos espinocerebelosos: Fig 16. Estos tractos se originan en las células nerviosas del asta posterior que forman el núcleo torácico. Ambos reciben impulsos propioceptivos a través de la raíz posterior y originan axones que recorren la parte más superficial del cordón lateral formando los tractos espinocerebelosos posterior y anterior. El tracto espinocerebeloso posterior lleva impulsos del mismo lado del cuerpo, mientras que el anterior transmite impulsos cruzados y del mismo lado. Su destrucción conduce a la incoordinación muscular y trastornos del tono muscular. Existe cierta superposición en las conexiones terminales de las fibras de ambos tractos..
Tracto espinocerebeloso posteriorFig 16.
La neurona de primer orden tiene su soma en el ganglio de la raíz posterior y su axón sinapta con la segunda neurona en la base del asta posterior de la médula espinal. Es en este lugar donde las neuronas de segundo orden constituyen el núcleo torácico. Los axones ascienden por la región posterolateral del cordón lateral ipsilateral y penetran por el pedúnculo cerebeloso inferior para finalmente alcanzar la corteza cerebelosa. Como el núcleo torácico está presente sólo desde el octavo segmento cervical hasta el tercero o cuarto lumbar, los axones que transportan propiocepción de las regiones lumbar baja y sacra ascienden por el cordón posterior hasta llegar al segmento medular más inferior que contenga este núcleo.
El tracto espinocerebeloso posterior transporta información propioceptiva proveniente de los husos musculares, órganos tendinosos y receptores articulares de las extremidades y del tronco referente a tensión tendinosa y movimientos articulares y musculares. Toda esta información es integrada por la corteza cerebelosa para luego coordinar los movimientos y mantener la postura corporal.
Tracto espinocerebeloso anteriorFig 16.
El axón de la primera neurona sinapta en el núcleo torácico. La mayoría de los axones de la segunda neurona se decusan y ascienden por el cordón lateral contralateral; una pequeña cantidad de fibras lo hace por el mismo lado. Luego de ascender por el bulbo raquídeo y puente, las fibras penetran al cerebelo por el pedúnculo cerebeloso superior y terminan en la corteza cerebelosa. El tracto espinocerebeloso anterior transmite información propioceptiva desde husos musculares, órganos tendinosos y articulaciones del tronco y extremidades. Es posible también que lleve al cerebelo información de la piel y fascia superficial de estas regiones.

Tractos del Cordón posteriorFig 16.: Los axones del cordón posterior no provienen de neuronas del asta posterior, sino que son la continuación directa e ininterrumpida de fibras propioceptivas de la raíz posterior homolateral, por lo atntolas neuronas de primer orden están localizadas en los ganglios espinales de las raices posteriores. Estas fifras entran a la médula espinal a diferentes niveles y ascienden sin decusarse hasta el bulbo raquídeo. Una vez dentro de la médula, estas fibras dan colaterales s descendentes cortas que sinaptan con neuronas del asta posterior, interneuronas y neuronas del asta anterior a distintos niveles medulares; se cree que estas conexiones participan en reflejos intersegmentarios. La mayoría de las fibras ascendentes continúan hacia el bulbo raquídeo sin hacer sinapsis en la médula espinal. Conforme van entrando, las fibras de niveles inferiores son desplazadas a la línea media por las que ingresan a niveles más altos. De esta manera, en el extremo medular superior las fibras de los segmentos sacros se ubican medialmente y las de los segmentos cervicales están lateralmente. Las fibras de la mitad medial de cada cordón posterior ubicadas entre el tabique intermedio posterior y el tabique mediano posterior forman fascículo gracilis (de Goll) Fig 2. Este tracto está presente a lo largo de toda la médula y contiene las fibras ascendentes largas de los segmentos sacros, lumbares y seis últimos torácicos que llevan impulsos propioceptivos de las extremidades inferiores y la mitad inferior del tronco. Las fibras de la mitad lateral de cada cordón posterior entre el tabique intermedio posterior y el surco lateral posterior constituyen el fascículo cuneatus (de Burdach) Fig 2. Este tracto está presente desde el sexto segmento torácico y contiene las fibras ascendentes largas de los segmentos cervicales y seis primeros torácicos que llevan impulsos propioceptivos de la parte superior del tronco y del miembro superior.
Las fibras de ambos tractos sinaptan con la neurona de segundo orden a nivel del bulbo raquídeo en los núcleos gracilis y cuneatus. Los axones de la neurona de segundo orden (fibras arqueadas internas) se dirigen anteromedialmente y cruzan la línea media formando la decusación sensitiva. Luego, las fibras ascienden formando un paquete compacto que cruza el tronco encefálico: el lemnisco medial. Las fibras sinaptan con la neurona de tercer orden en el núcleo ventral posterolateral del tálamo. Luego de cruzar el brazo posterior de la cápsula interna y la corona radiada, los axones de esta tercera neurona terminan en el giro postcentral de la corteza cerebral (área somestésica). En esta zona cortical, se interpretan las sensaciones de la mitad contralateral en forma inversa.
Estos tractos transmiten impulsos de percepción fina de los estímulos táctiles, incluyendo sensación táctil con elemento espacial. Su daño provoca que el paciente no precise el sitio del estímulo táctil ya sea de tipo único o doble simultáneo. Además, gracias a los impulsos propioceptivos transmitidos por estos tractos es posible reconocer conscientemente sensaciones vibratorias, movimientos activos o pasivos y la posición de las partes del cuerpo . Si se destruyen los tractos de la columna blanca posterior, sería imposible determinar en qué posición están los pies o los dedos a menos que el paciente los vea, y se pierde la sensación de movimiento y posición de los miembros inferiores. Si se les pide a estos pacientes que junten sus pies, so observa en ellos un movimiento de bambaleo.
Se sabe que aferencias propioceptivas de músculos del cuello se proyectam también a cerebelo a través del pedúnculo cerebeloso inferior ipsilateral. Esta vía es el denominadotracto cuneocerebelar y sus fibras constituyen las fibras arqueadas externas posteriores. Estas fibras proyectan al paleocerebelo.

Foto22


No hay comentarios:

Publicar un comentario