La transformada de Hartley bidimensional se puede calcular mediante un proceso óptico analógico similar a una transformada de Fourier óptica (OFT), con la ventaja propuesta de que solo es necesario determinar su amplitud y signo en lugar de su fase compleja. [3] Sin embargo, las transformaciones ópticas de Hartley no parecen haber tenido un uso generalizado.
Definición [ editar ]
La transformada de Hartley de una función f ( t ) se define por:
- {\ displaystyle H (\ omega) = \ left \ {{\ mathcal {H}} f \ right \} (\ omega) = {\ frac {1} {\ sqrt {2 \ pi}}} \ int _ { - \ infty} ^ {\ infty} f (t) \ operatorname {cas} (\ omega t) \, \ mathrm {d} t,}

- {\ displaystyle \ operatorname {cas} (t) = \ cos (t) + \ sin (t) = {\ sqrt {2}} \ sin (t + \ pi / 4) = {\ sqrt {2}} \ cos (t- \ pi / 4) \,}

es el coseno y el seno o kernel de Hartley . En términos de ingeniería, esta transformación toma una señal (función) del dominio del tiempo al dominio espectral de Hartley (dominio de la frecuencia).
Transformada inversa [ editar ]
La transformada de Hartley tiene la propiedad conveniente de ser su propio inverso (una involución ):
- {\ displaystyle f = \ {{\ mathcal {H}} \ {{\ \ mathcal {H}} f \} \}.}

Convenciones [ editar ]
Lo anterior está de acuerdo con la definición original de Hartley, pero (al igual que con la transformada de Fourier) varios detalles menores son asuntos de convención y se pueden cambiar sin alterar las propiedades esenciales:
- En lugar de utilizar la misma transformación para adelante e inverso, se puede eliminar el {\ displaystyle {1} / {\ sqrt {2 \ pi}}}
de la transformación hacia adelante y el uso {\ displaystyle {1} / {2 \ pi}}
para el inverso, o, de hecho, cualquier par de normalizaciones cuyo producto es {\ displaystyle {1} / {2 \ pi}}
. (Tales normalizaciones asimétricas se encuentran a veces tanto en contextos puramente matemáticos como de ingeniería).
- También se puede utilizar {\ displaystyle 2 \ pi \ nu t}
en lugar de {\ displaystyle \ omega t}
(es decir, frecuencia en lugar de frecuencia angular), en cuyo caso la {\ displaystyle {1} / {\ sqrt {2 \ pi}}}
El coeficiente se omite por completo.
- Uno puede usar cos-sin en lugar de cos + sin como núcleo.
Relación con la transformada de Fourier [ editar ]
Esta transformada difiere de la clásica transformada de Fourier. {\ displaystyle F (\ omega) = {\ mathcal {F}} \ {f (t) \} (\ omega)}
En la elección del kernel. En la transformada de Fourier, tenemos el kernel exponencial: {\ displaystyle \ exp \ left ({- i \ omega t} \ right) = \ cos (\ omega t) -i \ sin (\ omega t),}
donde i es la unidad imaginaria .
Sin embargo, las dos transformaciones están estrechamente relacionadas y la transformada de Fourier (suponiendo que utiliza la misma {\ displaystyle 1 / {\ sqrt {2 \ pi}}}
convención de normalización) se puede calcular a partir de la transformación de Hartley mediante:
- {\ displaystyle F (\ omega) = {\ frac {H (\ omega) + H (- \ omega)} {2}} - i {\ frac {H (\ omega) -H (- \ omega)} { 2}}.}

Es decir, las partes reales e imaginarias de la transformada de Fourier están simplemente dadas por las partes pares e impares de la transformada de Hartley, respectivamente.
A la inversa, para las funciones de valor real f ( t ), la transformada de Hartley se da a partir de las partes reales e imaginarias de la transformada de Fourier:
- {\ displaystyle \ {{\ mathcal {H}} f \} = \ Re \ {{\ mathcal {F}} f \} - \ Im \ {{\ mathcal {F}} f \} = \ Re \ { {\ mathcal {F}} f \ cdot (1 + i) \}}

dónde {\ displaystyle \ Re}
y {\ displaystyle \ Im}
denota las partes reales e imaginarias de la compleja transformación de Fourier.
Propiedades [ editar ]
También hay un análogo del teorema de convolución para la transformada de Hartley. Si dos funciones{\ displaystyle x (t)}
y {\ displaystyle y (t)}
tienen transformadas de Hartley {\ displaystyle X (\ omega)}
y {\ displaystyle Y (\ omega)}
, respectivamente, luego su convolución {\ displaystyle z (t) = x * y}
tiene la transformada de Hartley [ cita requerida ] :
- {\ displaystyle Z (\ omega) = \ {{\ \ mathcal {H}} (x * y) \} = {\ sqrt {2 \ pi}} \ left (X (\ omega) \ left [Y (\ omega ) + Y (- \ omega) \ right] + X (- \ omega) \ left [Y (\ omega) -Y (- \ omega) \ right] \ right) / 2.}
![Z (\ omega) = \ {{\ mathcal {H}} (x * y) \} = {\ sqrt {2 \ pi}} \ left (X (\ omega) \ left [Y (\ omega) + Y (- \ omega) \ right] + X (- \ omega) \ left [Y (\ omega) -Y (- \ omega) \ right] \ right) / 2.](https://wikimedia.org/api/rest_v1/media/math/render/svg/a5449f17d493a7906ba60163ec38250caa1f8c6c)
Similar a la transformada de Fourier, la transformada de Hartley de una función par / impar es par / impar, respectivamente.
Las propiedades del kernel de Hartley , para las cuales Hartley introdujo el nombre de función cas (de coseno y seno ) en 1942, [1] [4] se derivan directamente de la trigonometría , y su definición como una función trigonométrica de cambio de fase.{\ displaystyle \ operatorname {cas} (t) = {\ sqrt {2}} \ sin (t + \ pi / 4)}
. Por ejemplo, tiene una identidad de adición de ángulo de:
- {\ displaystyle 2 \ operatorname {cas} (a + b) = \ operatorname {cas} (a) \ operatorname {cas} (b) + \ operatorname {cas} (-a) \ operatorname {cas} (b) + \ operatorname {cas} (a) \ operatorname {cas} (-b) - \ operatorname {cas} (-a) \ operatorname {cas} (-b). \,}

Adicionalmente:
- {\ displaystyle \ operatorname {cas} (a + b) = {\ cos (a) \ operatorname {cas} (b)} + {\ sin (a) \ operatorname {cas} (-b)} = \ cos ( b) \ operatorname {cas} (a) + \ sin (b) \ operatorname {cas} (-a) \,}

y su derivado viene dado por:
- {\ displaystyle \ operatorname {cas} '(a) = {\ frac {\ mathrm {d}} {\ mathrm {d} a}} \ operatorname {cas} (a) = \ cos (a) - \ sin ( a) = \ operatorname {cas} (-a).}

- triángulo heptagonal es un triángulo escaleno obtuso cuyos vérticescoinciden con los vértices primero, segundo y cuarto de un heptágonoregular (de un vértice inicial arbitrario). Por lo tanto, sus lados coinciden con un lado y las diagonales adyacentes, más cortas y más largas, del heptágono regular. Todos los triángulos heptagonales son similares (tienen la misma forma), y por lo que se conocen colectivamente como el triángulo heptagonal. Sus ángulos tienen medidas. {\ displaystyle \ pi / 7,2 \ pi / 7,}
y {\ displaystyle 4 \ pi / 7,}
y es el único triángulo con ángulos en las relaciones 1: 2: 4. El triángulo heptagonal tiene varias propiedades notables.

Un heptágono regular (con lados rojos), sus diagonales más largas (verde) y sus diagonales más cortas (azul). Cada uno de los catorce triángulos heptagonales congruentes tiene un lado verde, un lado azul y un lado rojo.
Puntos clave [ editar ]
El segundo punto de Brocard se encuentra en el círculo de nueve puntos. [2] : p. 19
La distancia entre el circuncentro O y el ortocentro H viene dada por [2] : p. 19
- {\ displaystyle OH = R {\ sqrt {2}},}

- {\ displaystyle IH ^ {2} = {\ frac {R ^ {2} + 4r ^ {2}} {2}},}

Las dos tangentes que van del ortocentro al circuncírculo son mutuamente perpendiculares . [2] : p. 19
Relaciones de distancias [ editar ]
Los lados del triángulo heptagonal a < b < c coinciden respectivamente con el lado del heptágono regular, diagonal más corta y diagonal más larga. Satisfacen [3] : Lemma 1
- {\ displaystyle {\ begin {alineado} a ^ {2} & = c (cb), \\ [5pt] b ^ {2} & = a (c + a), \\ [5pt] c ^ {2} & = b (a + b), \\ [5pt] {\ frac {1} {a}} & = {\ frac {1} {b}} + {\ frac {1} {c}} \ end { alineado}}}
![{\ displaystyle {\ begin {alineado} a ^ {2} & = c (cb), \\ [5pt] b ^ {2} & = a (c + a), \\ [5pt] c ^ {2} & = b (a + b), \\ [5pt] {\ frac {1} {a}} & = {\ frac {1} {b}} + {\ frac {1} {c}} \ end { alineado}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/63107bd555aab31d4dbd45b3bea63fcb044aeb43)
- {\ displaystyle ab + ac = bc,}

- {\ displaystyle b ^ {3} + 2b ^ {2} c-bc ^ {2} -c ^ {3} = 0,}

- {\ displaystyle c ^ {3} -2c ^ {2} a-ca ^ {2} + a ^ {3} = 0,}

- {\ displaystyle a ^ {3} -2a ^ {2} b-ab ^ {2} + b ^ {3} = 0.}

- {\ displaystyle t ^ {3} -2t ^ {2} -t + 1 = 0.}

La relación aproximada de los lados es
- {\ displaystyle b \ approx 1.80193 \ cdot a, \ qquad c \ approx 2.24698 \ cdot a.}

- {\ displaystyle {\ frac {a ^ {2}} {bc}}, \ quad - {\ frac {b ^ {2}} {ca}}, \ quad - {\ frac {c ^ {2}} { ab}}}

- {\ displaystyle t ^ {3} + 4t ^ {2} + 3t-1 = 0.}

- {\ displaystyle {\ frac {a ^ {3}} {bc ^ {2}}}, \ quad - {\ frac {b ^ {3}} {ca ^ {2}}}, \ quad {\ frac { c ^ {3}} {ab ^ {2}}}}

- {\ displaystyle t ^ {3} -t ^ {2} -9t + 1 = 0.}

- {\ displaystyle {\ frac {a ^ {3}} {b ^ {2} c}}, \ quad {\ frac {b ^ {3}} {c ^ {2} a}}, \ quad - {\ frac {c ^ {3}} {a ^ {2} b}}}

- {\ displaystyle t ^ {3} + 5t ^ {2} -8t + 1 = 0.}

También tenemos [2] : p. 14
- {\ displaystyle b ^ {2} -a ^ {2} = ac,}

- {\ displaystyle c ^ {2} -b ^ {2} = ab,}

- {\ displaystyle a ^ {2} -c ^ {2} = - bc,}

- {\ displaystyle {\ frac {b ^ {2}} {a ^ {2}}} + {\ frac {c ^ {2}} {b ^ {2}}} + {\ frac {a ^ {2} } {c ^ {2}}} = 5.}

- {\ displaystyle ab-bc + ca = 0,}

- {\ displaystyle a ^ {3} bb ^ {3} c + c ^ {3} a = 0,}

- {\ displaystyle a ^ {4} b + b ^ {4} cc ^ {4} a = 0,}

- {\ displaystyle a ^ {11} b ^ {3} -b ^ {11} c ^ {3} + c ^ {11} a ^ {3} = 0.}

No hay otros ( m, n ), m, n > 0, m, n <2000 de="" font="" modo="" nbsp="" que="">[ citación necesaria ]
- {\ displaystyle a ^ {m} b ^ {n} \ pm b ^ {m} c ^ {n} \ pm c ^ {m} a ^ {n} = 0.}

Altitudes [ editar ]
Las altitudes h a , h b y h c satisfacen
- {\ displaystyle h_ {a} = h_ {b} + h_ {c}}
[2] : p. 13
y
- {\ displaystyle h_ {a} ^ {2} + h_ {b} ^ {2} + h_ {c} ^ {2} = {\ frac {a ^ {2} + b ^ {2} + c ^ {2 }} {2}}.}
[2] : p. 14
La altitud desde el lado b (ángulo opuesto B ) es la mitad de la bisectriz del ángulo interno{\ displaystyle w_ {A}}
de A : [2] : p. 19
- {\ displaystyle 2h_ {b} = w_ {A}.}

Aquí el ángulo A es el ángulo más pequeño, y B es el segundo más pequeño.
Bisectrices de ángulo interno [ editar ]
Tenemos estas propiedades de las bisectrices de ángulo interno. {\ displaystyle w_ {A}, w_ {B},}
y {\ displaystyle w_ {C}}
de los ángulos A, B y Crespectivamente: [2] : p. dieciséis
- {\ displaystyle w_ {A} = b + c,}

- {\ displaystyle w_ {B} = ca,}

- {\ displaystyle w_ {C} = ba.}

Circumradius, inradius y exradius [ editar ]
El área del triángulo es [5]
- {\ displaystyle A = {\ frac {\ sqrt {7}} {4}} R ^ {2},}

- {\ displaystyle a ^ {2} + b ^ {2} + c ^ {2} = 7R ^ {2}.}

- {\ displaystyle a ^ {4} + b ^ {4} + c ^ {4} = 21R ^ {4}.}

- {\ displaystyle a ^ {6} + b ^ {6} + c ^ {6} = 70R ^ {6}.}

La relación r / R de inradius a circumradius es la solución positiva de la ecuación cúbica [5]
- {\ displaystyle 8x ^ {3} + 28x ^ {2} + 14x-7 = 0.}

- {\ displaystyle {\ frac {1} {a ^ {2}}} + {\ frac {1} {b ^ {2}}} + {\ frac {1} {c ^ {2}}} = {\ frac {2} {R ^ {2}}}.}

- {\ displaystyle {\ frac {1} {a ^ {4}}} + {\ frac {1} {b ^ {4}}} + {\ frac {1} {c ^ {4}}} = {\ frac {2} {R ^ {4}}}.}

- {\ displaystyle {\ frac {1} {a ^ {6}}} + {\ frac {1} {b ^ {6}}} + {\ frac {1} {c ^ {6}}} = {\ frac {17} {7R ^ {6}}}.}

En general para todos los enteros n ,
- {\ displaystyle a ^ {2n} + b ^ {2n} + c ^ {2n} = g (n) (2R) ^ {2n}}

dónde
- {\ displaystyle g (-1) = 8, \ quad g (0) = 3, \ quad g (1) = 7}

y
- {\ displaystyle g (n) = 7g (n-1) -14g (n-2) + 7g (n-3).}

- {\ displaystyle 2b ^ {2} -a ^ {2} = {\ sqrt {7}} bR, \ quad 2c ^ {2} -b ^ {2} = {\ sqrt {7}} cR, \ quad 2a ^ {2} -c ^ {2} = - {\ sqrt {7}} aR.}

- {\ displaystyle a ^ {3} c + b ^ {3} ac ^ {3} b = -7R ^ {4},}

- {\ displaystyle a ^ {4} cb ^ {4} a + c ^ {4} b = 7 {\ sqrt {7}} R ^ {5},}

- {\ displaystyle a ^ {11} c ^ {3} + b ^ {11} a {3} -c ^ {11} b ^ {3} = - 7 ^ {3} 17R ^ {14}.}

Triángulo ortico [ editar ]
El triángulo órtico del triángulo heptagonal , con vértices a los pies de las altitudes , es similar al triángulo heptagonal, con una relación de similitud de 1: 2. El triángulo heptagonal es el único triángulo obtuso que es similar a su triángulo órtico (el triángulo equilátero es el único agudo). [2] : pp. 12-13
Propiedades trigonométricas [ editar ]
- {\ displaystyle A = {\ frac {\ pi} {7}}, \ quad B = {\ frac {2 \ pi} {7}}, \ quad C = {\ frac {4 \ pi} {7}} .}

- {\ displaystyle \ cos A = b / 2a, \ quad \ cos B = c / 2b, \ quad \ cos C = -a / 2c,}
[4] : Proposición 10
- {\ displaystyle \ cos A \ cos B \ cos C = - {\ frac {1} {8}},}

- {\ displaystyle \ cos ^ {2} A + \ cos ^ {2} B + \ cos ^ {2} C = {\ frac {5} {4}},}

- {\ displaystyle \ cos ^ {4} A + \ cos ^ {4} B + \ cos ^ {4} C = {\ frac {13} {16}},}

- {\ displaystyle \ cot A + \ cot B + \ cot C = {\ sqrt {7}},}

- {\ displaystyle \ cot ^ {2} A + \ cot ^ {2} B + \ cot ^ {2} C = 5,}

- {\ displaystyle \ csc ^ {2} A + \ csc ^ {2} B + \ csc ^ {2} C = 8,}

- {\ displaystyle \ csc ^ {4} A + \ csc ^ {4} B + \ csc ^ {4} C = 32,}

- {\ displaystyle \ sec ^ {2} A + \ sec ^ {2} B + \ sec ^ {2} C = 24,}

- {\ displaystyle \ sec ^ {4} A + \ sec ^ {4} B + \ sec ^ {4} C = 416,}

- {\ displaystyle \ sin A \ sin B \ sin C = {\ frac {\ sqrt {7}} {8}},}

- {\ displaystyle \ sin ^ {2} A \ sin ^ {2} B \ sin ^ {2} C = {\ frac {7} {64}},}

- {\ displaystyle \ sin ^ {2} A + \ sin ^ {2} B + \ sin ^ {2} C = {\ frac {7} {4}},}

- {\ displaystyle \ sin ^ {4} A + \ sin ^ {4} B + \ sin ^ {4} C = {\ frac {21} {16}},}

- {\ displaystyle \ tan A \ tan B \ tan C = \ tan A + \ tan B + \ tan C = - {\ sqrt {7}},}

- {\ displaystyle \ tan ^ {2} A + \ tan ^ {2} B + \ tan ^ {2} C = 21.}

La ecuación cúbica
- {\ displaystyle 64y ^ {3} -112y ^ {2} + 56y-7 = 0}

tiene soluciones [2] : p. 14 {\ displaystyle \ sin ^ {2} {\ frac {\ pi} {7}}, \ sin ^ {2} {\ frac {2 \ pi} {7}},}
y {\ displaystyle \ sin ^ {2} {\ frac {4 \ pi} {7}},}
cuales son los senos cuadrados de los ángulos del triángulo.
La solución positiva de la ecuación cúbica.
- {\ displaystyle x ^ {3} + x ^ {2} -2x-1 = 0}

es igual a {\ displaystyle 2 \ cos {\ frac {2 \ pi} {7}},}
que es el doble del coseno de uno de los ángulos del triángulo. [7] : p. 186–187
El pecado (2π / 7), el pecado (4π / 7) y el pecado (8π / 7) son las raíces de [4]
- {\ displaystyle x ^ {3} - {\ frac {\ sqrt {7}} {2}} x ^ {2} + {\ frac {\ sqrt {7}} {8}} = 0.}

- {\ displaystyle \ sin A- \ sin B- \ sin C = - {\ frac {\ sqrt {7}} {2}},}

- {\ displaystyle \ sin A \ sin B- \ sin B \ sin C + \ sin C \ sin A = 0,}

- {\ displaystyle \ sin A \ sin B \ sin C = {\ frac {\ sqrt {7}} {8}}.}

- {\ displaystyle - \ sin A, \ sin B, \ sin C {\ text {son las raíces de}} x ^ {3} - {\ frac {\ sqrt {7}} {2}} x ^ {2} + {\ frac {\ sqrt {7}} {8}} = 0.}

Para un entero n , vamos
- {\ displaystyle S (n) = (- \ sin {A}) ^ {n} + \ sin ^ {n} {B} + \ sin ^ {n} {C}.}

Para n = 0, ..., 20,
- {\ displaystyle S (n) = 3, {\ frac {\ sqrt {7}} {2}}, {\ frac {7} {2 ^ {2}}}, {\ frac {\ sqrt {7}} {2}}, {\ frac {7 \ cdot 3} {2 ^ {4}}}, {\ frac {7 {\ sqrt {7}}} {2 ^ {4}}}, {\ frac {7 \ cdot 5} {2 ^ {5}}}, {\ frac {7 ^ {2} {\ sqrt {7}}} {2 ^ {7}}}, {\ frac {7 ^ {2} \ cdot 5} {2 ^ {8}}}, {\ frac {7 \ cdot 25 {\ sqrt {7}}} {2 ^ {9}}}, {\ frac {7 ^ {2} \ cdot 9} { 2 ^ {9}}}, {\ frac {7 ^ {2} \ cdot 13 {\ sqrt {7}}} {2 ^ {11}}},}

- {\ displaystyle {\ frac {7 ^ {2} \ cdot 33} {2 ^ {11}}}, {\ frac {7 ^ {2} \ cdot 3 {\ sqrt {7}}} {2 ^ {9 }}}, {\ frac {7 ^ {4} \ cdot 5} {2 ^ {14}}}, {\ frac {7 ^ {2} \ cdot 179 {\ sqrt {7}}} {2 ^ { 15}}}, {\ frac {7 ^ {3} \ cdot 131} {2 ^ {16}}}, {\ frac {7 ^ {3} \ cdot 3 {\ sqrt {7}}} {2 ^ {12}}}, {\ frac {7 ^ {3} \ cdot 493} {2 ^ {18}}}, {\ frac {7 ^ {3} \ cdot 181 {\ sqrt {7}}} {2 ^ {18}}}, {\ frac {7 ^ {5} \ cdot 19} {2 ^ {19}}}.}

Para n = 0, -1,, ..- 20,
- {\ displaystyle S (n) = 3,0,2 ^ {3}, - {\ frac {2 ^ {3} \ cdot 3 {\ sqrt {7}}} {7}}, 2 ^ {5}, - {\ frac {2 ^ {5} \ cdot 5 {\ sqrt {7}}} {7}}, {\ frac {2 ^ {6} \ cdot 17} {7}}, - 2 ^ {7} {\ sqrt {7}}, {\ frac {2 ^ {9} \ cdot 11} {7}}, - {\ frac {2 ^ {10} \ cdot 33 {\ sqrt {7}}} {7 ^ {2}}}, {\ frac {2 ^ {10} \ cdot 29} {7}}, - {\ frac {2 ^ {14} \ cdot 11 {\ sqrt {7}}} {7 ^ {2 }}}, {\ frac {2 ^ {12} \ cdot 269} {7 ^ {2}}},}

- {\ displaystyle - {\ frac {2 ^ {13} \ cdot 117 {\ sqrt {7}}} {7 ^ {2}}}, {\ frac {2 ^ {14} \ cdot 51} {7}} , - {\ frac {2 ^ {21} \ cdot 17 {\ sqrt {7}}} {7 ^ {3}}}, {\ frac {2 ^ {17} \ cdot 237} {7 ^ {2} }}, - {\ frac {2 ^ {17} \ cdot 1445 {\ sqrt {7}}} {7 ^ {3}}}, {\ frac {2 ^ {19} \ cdot 2203} {7 ^ { 3}}}, - {\ frac {2 ^ {19} \ cdot 1919 {\ sqrt {7}}} {7 ^ {3}}}, {\ frac {2 ^ {20} \ cdot 5851} {7 ^ {3}}}.}

- {\ displaystyle - \ cos A, \ cos B, \ cos C {\ text {son las raíces de}} x ^ {3} + {\ frac {1} {2}} x ^ {2} - {\ frac {1} {2}} x - {\ frac {1} {8}} = 0.}

Para un entero n , vamos
- {\ displaystyle C (n) = (- \ cos {A}) ^ {n} + \ cos ^ {n} {B} + \ cos ^ {n} {C}.}

Para n = 0, 1,, .. 10,
- {\ displaystyle C (n) = 3, - {\ frac {1} {2}}, {\ frac {5} {4}}, - {\ frac {1} {2}}, {\ frac {13 } {16}}, - {\ frac {1} {2}}, {\ frac {19} {32}}, - {\ frac {57} {128}}, {\ frac {117} {256} }, - {\ frac {193} {512}}, {\ frac {185} {512}}, ...}

- {\ displaystyle C (-n) = 3, -4,24, -88,416, -1824,8256, -36992,166400, -747520,3359744, ...}

- {\ displaystyle \ tan A, \ tan B, \ tan C {\ text {son las raíces de}} x ^ {3} + {\ sqrt {7}} x ^ {2} -7x + {\ sqrt {7} } = 0.}

- {\ displaystyle \ tan ^ {2} A, \ tan ^ {2} B, \ tan ^ {2} C {\ text {son las raíces de}} x ^ {3} -21x ^ {2} + 35x- 7 = 0.}

Para un entero n , vamos
- {\ displaystyle T (n) = \ tan ^ {n} {A} + \ tan ^ {n} {B} + \ tan ^ {n} {C}.}

Para n = 0, 1,, .. 10,
- {\ displaystyle T (n) = 3, - {\ sqrt {7}}, 7 \ cdot 3, -31 {\ sqrt {7}}, 7 \ cdot 53, -7 \ cdot 87 {\ sqrt {7} }, 7 \ cdot 1011, -7 ^ {2} \ cdot 239 {\ sqrt {7}}, 7 ^ {2} \ cdot 2771, -7 \ cdot 32119 {\ sqrt {7}}, 7 ^ {2 } \ cdot 53189,}

- {\ displaystyle T (-n) = 3, {\ sqrt {7}}, 5, {\ frac {25 {\ sqrt {7}}} {7}}, 19, {\ frac {103 {\ sqrt { 7}}} {7}}, {\ frac {563} {7}}, 7 \ cdot 9 {\ sqrt {7}}, {\ frac {2421} {7}}, {\ frac {13297 {\ sqrt {7}}} {7 ^ {2}}}, {\ frac {10435} {7}}, ...}

- {\ displaystyle \ tan A-4 \ sin B = - {\ sqrt {7}},}

- {\ displaystyle \ tan B-4 \ sin C = - {\ sqrt {7}},}

- {\ displaystyle \ tan C + 4 \ sin A = - {\ sqrt {7}}.}

- {\ displaystyle \ cot ^ {2} A = 1 - {\ frac {2 \ tan C} {\ sqrt {7}}},}

- {\ displaystyle \ cot ^ {2} B = 1 - {\ frac {2 \ tan A} {\ sqrt {7}}},}

- {\ displaystyle \ cot ^ {2} C = 1 - {\ frac {2 \ tan B} {\ sqrt {7}}}.}

- {\ displaystyle \ cos A = - {\ frac {1} {2}} + {\ frac {4} {\ sqrt {7}}} \ sin ^ {3} C,}

- {\ displaystyle \ cos ^ {2} A = {\ frac {3} {4}} + {\ frac {2} {\ sqrt {7}}} \ sin ^ {3} A,}

- {\ displaystyle \ cot A = {\ frac {3} {\ sqrt {7}}} + {\ frac {4} {\ sqrt {7}}} \ cos B,}

- {\ displaystyle \ cot ^ {2} A = 3 + {\ frac {8} {\ sqrt {7}}} \ sin A,}

- {\ displaystyle \ cot A = {\ sqrt {7}} + {\ frac {8} {\ sqrt {7}}} \ sin ^ {2} B,}

- {\ displaystyle \ csc ^ {3} A = - {\ frac {6} {\ sqrt {7}}} + {\ frac {2} {\ sqrt {7}}} \ tan ^ {2} C,}

- {\ displaystyle \ sec A = 2 + 4 \ cos C,}

- {\ displaystyle \ sec A = 6-8 \ sin ^ {2} B,}

- {\ displaystyle \ sec A = 4 - {\ frac {16} {\ sqrt {7}}} \ sin ^ {3} B,}

- {\ displaystyle \ sin ^ {2} A = {\ frac {1} {2}} + {\ frac {1} {2}} \ cos B,}

- {\ displaystyle \ sin ^ {3} A = - {\ frac {\ sqrt {7}} {8}} + {\ frac {\ sqrt {7}} {4}} \ cos B,}

- {\ displaystyle \ sin ^ {3} B \ sin C- \ sin ^ {3} C \ sin A- \ sin ^ {3} A \ sin B = 0,}

- {\ displaystyle \ sin B \ sin ^ {3} C- \ sin C \ sin ^ {3} A- \ sin A \ sin ^ {3} B = {\ frac {7} {2 ^ {4}}} ,}

- {\ displaystyle \ sin ^ {4} B \ sin C- \ sin ^ {4} C \ sin A + \ sin ^ {4} A \ sin B = 0,}

- {\ displaystyle \ sin B \ sin ^ {4} C + \ sin C \ sin ^ {4} A- \ sin A \ sin ^ {4} B = {\ frac {7 {\ sqrt {7}}} {2 ^ {5}}},}

- {\ displaystyle \ sin ^ {11} B \ sin ^ {3} C- \ sin ^ {11} C \ sin ^ {3} A- \ sin ^ {11} A \ sin ^ {3} B = 0, }

- {\ displaystyle \ sin ^ {3} B \ sin ^ {11} C- \ sin ^ {3} C \ sin ^ {11} A- \ sin ^ {3} A \ sin ^ {11} B = {\ frac {7 ^ {3} \ cdot 17} {2 ^ {14}}}.}

No hay comentarios:
Publicar un comentario