doble esfera de Fourier (DFS) es una técnica simple que transforma una función definida en la superficie de la esfera en una función definida en un dominio rectangular al tiempo que conserva la periodicidad en las direcciones de longitud y latitud.
Introducción [ editar ]
Primero, una funcion en la esfera se escribe como utilizando coordenadas esféricas , es decir,
La función es Periódico en , pero no periodico en . La periodicidad en la dirección de latitud se ha perdido. Para recuperarla, la función se "duplica" y una función relacionada en Se define como
dónde y para . La nueva funcion es Periódico en y , y es constante a lo largo de las lineas y , correspondiente a los polos.
La función Se puede ampliar a una doble serie de Fourier.
Historia [ editar ]
Fórmulas básicas [ editar ]
Las coordenadas cartesianas. Se puede producir a partir de las coordenadas elipsoidales. por las ecuaciones
donde se aplican los siguientes límites a las coordenadas
Consecuentemente, superficies de constante. son elipsoides
mientras que las superficies de constante son hiperboloides de una hoja
Porque el último término en lhs es negativo, y superficies de constante. son hiperboloides de dos hojas
porque los dos últimos términos en el lhs son negativos.
Factores de escala y operadores diferenciales [ editar ]
Para mayor brevedad en las siguientes ecuaciones, introducimos una función.
dónde Puede representar cualquiera de las tres variables. . Usando esta función, se pueden escribir los factores de escala.
Por lo tanto, el elemento de volumen infinitesimal es igual a
-
-
-
-
Otros operadores diferenciales tales como y Se puede expresar en las coordenadas. sustituyendo los factores de escala en las fórmulas generales que se encuentran en las coordenadas ortogonales.
De Wikipedia, la enciclopedia libre
Coordinar superficies de coordenadas cilíndricas elípticas. La hoja amarilla es el prisma de una media hipérbola correspondiente a ν = -45 °, mientras que el tubo rojo es un prisma elíptico correspondiente a μ = 1. La hoja azul corresponde a z = 1. Las tres superficies se intersecan en el punto P (mostrado como una esfera negra) con coordenadas cartesianas aproximadamente (2.182, -1.661, 1.0). Los focos de la elipse y la hipérbola se encuentran en x = ± 2.0.
Definición básica [ editar ]
La definición más común de coordenadas cilíndricas elípticas. es
dónde es un número real no negativo y .
Estas definiciones corresponden a elipsis e hipérbola. La identidad trigonométrica.
muestra que las curvas de constante Forma elipsis , mientras que la identidad trigonométrica hiperbólica.
muestra que las curvas de constante forma hipérbola .
Factores de escala [ editar ]
Los factores de escala para las coordenadas cilíndricas elípticas. y son iguales
mientras que el factor de escala restante . En consecuencia, un elemento de volumen infinitesimal es igual a
y los iguales laplacianos
Otros operadores diferenciales tales como y Se puede expresar en las coordenadas. sustituyendo los factores de escala en las fórmulas generales que se encuentran en las coordenadas ortogonales.
Definición alternativa [ editar ]
Un conjunto alternativo y geométricamente intuitivo de coordenadas elípticas. se utilizan a veces, donde y . De ahí, las curvas de constante. Son elipsis, mientras que las curvas de constante. son hipérboles. La coordenada debe pertenecer al intervalo [-1, 1], mientras que la coordenada debe ser mayor o igual que uno.
Las coordenadas Tener una relación simple con las distancias a los focos. y . Para cualquier punto en el plano (x, y), la suma De sus distancias a los focos iguales. , mientras que su diferencia es igual a . Por lo tanto, la distancia a es , mientras que la distancia a es . (Recordar que y se encuentran en y , respectivamente.)
Factores de escala alternativos [ editar ]
Los factores de escala para las coordenadas elípticas alternativas. son
y por supuesto, . Por lo tanto, el elemento de volumen infinitesimal se convierte en
y los iguales laplacianos
Otros operadores diferenciales tales como y Se puede expresar en las coordenadas. sustituyendo los factores de escala en las fórmulas generales que se encuentran en las coordenadas ortogonales.
Aplicaciones [ editar ]
Las propiedades geométricas de las coordenadas elípticas también pueden ser útiles. Un ejemplo típico podría implicar una integración sobre todos los pares de vectores y esa suma a un vector fijo , donde el integrando era una función de las longitudes del vector y . (En tal caso, uno posicionaría entre los dos focos y alineado con el -axis, es decir, .) Por concreción, , y podría representar los impulsos de una partícula y sus productos de descomposición, respectivamente, y el integrando podría implicar las energías cinéticas de los productos (que son proporcionales a las longitudes de cuadrados de las cantidades de movimiento).
No hay comentarios:
Publicar un comentario