Operación | Coordenadas cartesianas ( x , y , z ) | Coordenadas cilíndricas ( ρ , φ , z ) | Coordenadas esféricas ( r , θ , φ ) , donde θ es la polar y φes el ángulo acimutal α |
Campo vectorial A | {\ displaystyle A_ {x} {\ hat {\ mathbf {x}}} + A_ {y} {\ hat {\ mathbf {y}}} + A_ {z} {\ hat {\ mathbf {z}}} } | {\ displaystyle A _ {\ rho} {\ hat {\ boldsymbol {\ rho}}} + A _ {\ varphi} {\ hat {\ boldsymbol {\ varphi}}} + A_ {z} {\ hat {\ mathbf { z}}}} | {\ displaystyle A_ {r} {\ hat {\ mathbf {r}}} + A _ {\ theta} {\ hat {\ boldsymbol {\ theta}}} + A _ {\ varphi} {\ hat {\ boldsymbol {\ varphi}}}} |
Gradiente ∇ f [1] | {\ displaystyle {\ partial f \ over \ partial x} {\ hat {\ mathbf {x}}} + {\ partial f \ over \ partial y} {\ hat {\ mathbf {y}}} + {\ partial f \ over \ partial z} {\ hat {\ mathbf {z}}}} | {\ displaystyle {\ partial f \ over \ partial \ rho} {\ hat {\ boldsymbol {\ rho}}} + {1 \ over \ rho} {\ partial f \ over \ partial \ varphi} {\ hat {\ boldsymbol {\ varphi}}} + {\ partial f \ over \ partial z} {\ hat {\ mathbf {z}}}} | {\ displaystyle {\ partial f \ over \ partial r} {\ hat {\ mathbf {r}}} + {1 \ over r} {\ partial f \ over \ partial \ theta} {\ hat {\ boldsymbol {\ theta}}} + {1 \ over r \ sin \ theta} {\ partial f \ over \ partial \ varphi} {\ hat {\ boldsymbol {\ varphi}}}} |
Divergencia ∇ ⋅ A [1] | {\ displaystyle {\ parcial A_ {x} \ sobre \ parcial x} + {\ parcial A_ {y} \ sobre \ parcial y} + {\ parcial A_ {z} \ sobre \ parcial z}} | {\ displaystyle {1 \ over \ rho} {\ partial \ left (\ rho A _ {\ rho} \ right) \ over \ partial \ rho} + {1 \ over \ rho} {\ partial A _ {\ varphi} \ over \ partial \ varphi} + {\ partial A_ {z} \ over \ partial z}} | {\ displaystyle {1 \ over r ^ {2}} {\ partial \ left (r ^ {2} A_ {r} \ right) \ over \ partial r} + {1 \ over r \ sin \ theta} {\ parcial \ sobre \ parcial \ theta} \ izquierda (A _ {\ theta} \ sin \ theta \ derecha) + {1 \ sobre r \ sin \ theta} {\ parcial A _ {\ varphi} \ sobre \ parcial \ varphi}} |
Curl ∇ × A [1] | {\ displaystyle {\ begin {alineado} \ left ({\ frac {\ parcial A_ {z}} {\ parcial y}} - {\ frac {\ parcial A_ {y}} {\ parcial z}} \ derecha) & {\ hat {\ mathbf {x}}} \\ + \ left ({\ frac {\ parcial A_ {x}} {\ parcial z}} - {\ frac {\ parcial A_ {z}} {\ parcial x}} \ derecha) & {\ hat {\ mathbf {y}}} \\ + \ left ({\ frac {\ parcial A_ {y}} {\ parcial x}} - {\ frac {\ parcial A_ { x}} {\ parcial y}} \ derecha) & {\ hat {\ mathbf {z}}} \ end {alineado}}} |  | {\ displaystyle {\ begin {alineado} {\ frac {1} {r \ sin \ theta}} \ left ({\ frac {\ partial} {\ partial \ theta}} \ left (A _ {\ varphi} \ sin \ theta \ right) - {\ frac {\ partial A _ {\ theta}} {\ partial \ varphi}} \ right) & {\ hat {\ mathbf {r}}} \\ {} + {\ frac {1 } {r}} \ left ({\ frac {1} {\ sin \ theta}} {\ frac {\ partial A_ {r}} {\ partial \ varphi}} - {\ frac {\ partial} {\ partial r}} \ left (rA _ {\ varphi} \ right) \ right) & {\ hat {\ boldsymbol {\ theta}}} \\ {} + {\ frac {1} {r}} \ left ({\ frac {\ partial} {\ partial r}} \ left (rA _ {\ theta} \ right) - {\ frac {\ partial A_ {r}} {\ partial \ theta}} \ right) & {\ hat {\ boldsymbol {\ varphi}}} \ end {alineado}}} |
Operador de Laplace ∇ 2 f ≡ ∆ f [1] | {\ displaystyle {\ parcial ^ {2} f \ sobre \ parcial x ^ {2}} + {\ parcial ^ {2} f \ sobre \ parcial y ^ {2}} + {\ parcial ^ {2} f \ sobre \ parcial z ^ {2}}} | {\ displaystyle {1 \ over \ rho} {\ partial \ over \ partial \ rho} \ left (\ rho {\ partial f \ over \ partial \ rho} \ right) + {1 \ over \ rho ^ {2} } {\ parcial ^ {2} f \ sobre \ parcial \ varphi ^ {2}} + {\ parcial ^ {2} f \ sobre \ parcial z ^ {2}}} | {\ displaystyle {1 \ over r ^ {2}} {\ partial \ over \ partial r} \! \ left (r ^ {2} {\ partial f \ over \ partial r} \ right) \! + \! {1 \ over r ^ {2} \! \ Sin \ theta} {\ partial \ over \ partial \ theta} \! \ Left (\ sin \ theta {\ partial f \ over \ partial \ theta} \ right) \ ! + \! {1 \ over r ^ {2} \! \ Sin ^ {2} \ theta} {\ partial ^ {2} f \ over \ partial \ varphi ^ {2}}} |
Vector laplaciano ∇ 2 A ≡ ∆ A | {\ displaystyle \ nabla ^ {2} A_ {x} {\ hat {\ mathbf {x}}} + \ nabla ^ {2} A_ {y} {\ hat {\ mathbf {y}}} + \ nabla ^ {2} A_ {z} {\ hat {\ mathbf {z}}}} |
- Ver haciendo clic en [Mostrar] -
|
- Ver haciendo clic en [Mostrar] -
|
Material derivado α [2]( A ⋅ ∇) B | {\ displaystyle \ mathbf {A} \ cdot \ nabla B_ {x} {\ hat {\ mathbf {x}}} + \ mathbf {A} \ cdot \ nabla B_ {y} {\ hat {\ mathbf {y} }} + \ mathbf {A} \ cdot \ nabla B_ {z} {\ hat {\ mathbf {z}}}} |  |
— View by clicking [show] —
|
Tensio divergencia∇ ⋅ T |
- Ver haciendo clic en [Mostrar] -
|
- Ver haciendo clic en [Mostrar] -
|
- Ver haciendo clic en [Mostrar] -
|
Desplazamiento diferenciald ℓ [1] | {\ displaystyle dx \, {\ hat {\ mathbf {x}}} + dy \, {\ hat {\ mathbf {y}}} + dz \, {\ hat {\ mathbf {z}}}} | {\ displaystyle d \ rho \, {\ hat {\ boldsymbol {\ rho}}} + \ rho \, d \ varphi \, {\ hat {\ boldsymbol {\ varphi}}} + dz \, {\ hat { \ mathbf {z}}}} | {\ displaystyle dr \, {\ hat {\ mathbf {r}}} + r \, d \ theta \, {\ hat {\ boldsymbol {\ theta}}} + r \, \ sin \ theta \, d \ varphi \, {\ hat {\ boldsymbol {\ varphi}}}} |
Área normal diferenciadad S | {\ displaystyle {\ begin {alineado} dy \, dz & \, {\ hat {\ mathbf {x}}} \\ {} + dx \, dz & \, {\ hat {\ mathbf {y}}} \\ {} + dx \, dy & \, {\ hat {\ mathbf {z}}} \ end {alineado}}} | {\ displaystyle {\ begin {alineado} \ rho \, d \ varphi \, dz & \, {\ hat {\ boldsymbol {\ rho}}} \\ {} + d \ rho \, dz & \, {\ hat { \ boldsymbol {\ varphi}}} \\ {} + \ rho \, d \ rho \, d \ varphi & \, {\ hat {\ mathbf {z}}} \ end {alineado}}} | {\ displaystyle {\ begin {alineado} r ^ {2} \ sin \ theta \, d \ theta \, d \ varphi & \, {\ hat {\ mathbf {r}}} \\ {} + r \ sin \ theta \, dr \, d \ varphi & \, {\ hat {\ boldsymbol {\ theta}}} \\ {} + r \, dr \, d \ theta & \, {\ hat {\ boldsymbol {\ varphi}}} \ end {alineado}}} |
Volumen diferencialdV [1] | {\ displaystyle dx \, dy \, dz} | {\ displaystyle \ rho \, d \ rho \, d \ varphi \, dz} | {\ displaystyle r ^ {2} \ sin \ theta \, dr \, d \ theta \, d \ varphi} |
No hay comentarios:
Publicar un comentario